988 resultados para Hydrographic basins
Resumo:
Reclaimed water from small wastewater treatment facilities in the rural areas of the Beira Interior region (Portugal) may constitute an alternative water source for aquifer recharge. A 21-month monitoring period in a constructed wetland treatment system has shown that 21,500 m(3) year(-1) of treated wastewater (reclaimed water) could be used for aquifer recharge. A GIS-based multi-criteria analysis was performed, combining ten thematic maps and economic, environmental and technical criteria, in order to produce a suitability map for the location of sites for reclaimed water infiltration. The areas chosen for aquifer recharge with infiltration basins are mainly composed of anthrosol with more than 1 m deep and fine sand texture, which allows an average infiltration velocity of up to 1 m d(-1). These characteristics will provide a final polishing treatment of the reclaimed water after infiltration (soil aquifer treatment (SAT)), suitable for the removal of the residual load (trace organics, nutrients, heavy metals and pathogens). The risk of groundwater contamination is low since the water table in the anthrosol areas ranges from 10 m to 50 m. Oil the other hand, these depths allow a guaranteed unsaturated area suitable for SAT. An area of 13,944 ha was selected for study, but only 1607 ha are suitable for reclaimed water infiltration. Approximately 1280 m(2) were considered enough to set up 4 infiltration basins to work in flooding and drying cycles.
Resumo:
We present new Rayleigh-wave dispersion maps of the western Iberian Peninsula for periods between 8 and 30 s, obtained from correlations of seismic ambient noise, following the recent increase in seismic broadband network density in Portugal and Spain. Group velocities have been computed for each station pair using the empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. The resulting high-path density allows us to obtain lateral variations of the group velocities as a function of period in cells of 0.5 degrees x 0.5 degrees with an unprecedented resolution. As a result we were able to address some of the unknowns regarding the lithospheric structure beneath SW Iberia. The dispersion maps allow the imaging of the major structural units, namely the Iberian Massif, and the Lusitanian and Algarve Meso-Cenozoic basins. The Cadiz Gulf/Gibraltar Strait area corresponds to a strong low-velocity anomaly, which can be followed to the largest period inverted, although slightly shifted to the east at longer periods. Within the Iberian Massif, second-order perturbations in the group velocities are consistent with the transitions between tectonic units composing the massif. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Dissertação de Mestrado, Geologia do Ambiente e Sociedade, 8 de Maio de 2015, Universidade dos Açores.
Resumo:
O presente estudo diz respeito a um trabalho de pesquisa no âmbito de uma Tese de Mestrado compreendida no segundo ciclo de estudos do curso de Engenharia Geotécnica e Geoambiente, realizado sobre a contribuição da Fluorescência de Raios – X (FRX) no Zonamento de Georrecursos, com particular ênfase para a utilização do instrumento portátil e de ferramentas tecnológicas de vanguarda, indispensáveis à prospecção e exploração dos recursos minerais, designadamente na interpretação e integração de dados de natureza geológica e na modelação de métodos de exploração e processamento /tratamento de depósitos minerais, assim como do respectivo controlo. Esta dissertação discute os aspectos fundamentais da utilização da técnica de Fluorescência de Raios-X (portátil, FRXP), quanto à sua possibilidade de aplicação e metodologia exigida, com vista à definição de zonas com características químicas análogas do georrecurso e que preencham as exigências especificadas para a utilização da matéria-prima, nas indústrias consumidoras. Foi elaborada uma campanha de recolha de amostras de calcário proveniente da pedreira do Sangardão, em Condeixa–a–Nova, que numa primeira fase teve como objectivo principal a identificação da composição química da área em estudo e o grau de precisão do aparelho portátil de FRX. Para além desta análise foram, também, realizadas análises granulométricas por peneiração e sedimentação por Raios-X a amostras provenientes das bacias de sedimentação e do material passado no filtro prensa. Validado o método de análise por FRXP, realizou-se uma segunda fase deste trabalho, que consistiu na elaboração de uma amostragem bastante significativa de pontos, onde se realizaram análises por FRXP, de forma a obter uma maior cobertura química da área em estudo e localizar os locais chave de exploração da matéria-prima. Para uma correcta leitura dos dados analisados recorreu-se a ferramentas aliadas às novas tecnologias, as quais se mostraram um importante contributo para uma boa gestão do georrecurso em avaliação, nomeadamente o “XLSTAT” e o “Surfer” para tratamento estatístico dos dados e modelação, respectivamente.
Resumo:
Algarve Province, Southern Portugal, corresponds in part to a meso-cenozoic basin running along the coast from Cabo S. Vicente to beyond Spanish border. Structurally it is a big monocline plunging southwards much deformed mainly by two East-West longitudinal flexures. Lithostratigraphical and chronostratigraphical studies dealt specially with Jurassic formations. This and the geological mapping of the post-Hercynian sedimentary formations allow us to define the following units: Triassic-Lower Liassic Arenitos de Silves (Silves sandstones sensu P. Choffat, pro parte) - At their base the Silves sandstones (0-150m) are represented mainly by cross-bedded red sandstones. This unit is Upper Triassic (Keuper) in age, on the evidence of some Brachiopoda. Complexo margo-carbonatado de Silves (Silves marl-limestone complex=Silves sandstones sensu P. Choffat, pro parte) (80-200m) overlies the preceding, it may be reported to the Upper Triassic-Hettangian. It consists of a thick pelite-marl-dolomite-limestone series with many intercalations of greenstones. Since no fossils were found it is not possible to conclude whether it is still Hettangian or if it does correspond, in the whole or in part, already to the Sinemurian. Liassic Dolomitos e calcários dolomíticos de Espiche (Espiche dolomite-rocks and dolomitic-limestones) - The usually massive and finely crystalline or saccharoidal dolomites and dolomitic-limestones are the toughest strata of the Algarve margin giving rise to several hills. Its thickness attains in certain points 60 metres at least. Based on geometry and on lithological similarities with the carbonated complex of the northern basin of Tagus river (Peniche, São Pedro de Muel, Quiaios), this formation can be accepted as Sinemurian in age. As it happens with the carbonated complex, here also the first dolomite beds are non-isochronal throughout the region; upper time-limit of the dolomitic facies is either Lower Carixian, Lower Toarcian or even Lower Dogger. The dolomitization is secondary but not much later than sedimentation. However, between Cabo S. Vicente-Vila do Bispo there is evidence of an even later secondary dolomitization related to the regional fault complex. Calcário dolomítico com nódulos de silex da praia de Belixe (Belixe beach dolomitic-limestone with silex nodules) (50-55m) - Ascribed to Lower or Middle Carixian on the basis of Platypleuroceras sp., Metaderoceras sp. nov. and M. gr. Venarense. Calcário cristalino compacto com Protogrammoceras, Fuciniceras e ? Argutarpites de Belixe (Belixe compact crystalline limestone with Protogrammoceras, Fuciniceras and ? Argutarpites) (30m) - Ascribed to Lower Domerian. Middle and Upper Domerian are indicated but by a single specimen of ? Argutarpites. Calcários margosos e margas com Dactylioceras semicelatum e Harpoceratídeos de Armação Nova (Armação Nova marly limestones and marls with D. semicelatum and Harpoceratidae) (25m) -Ascribed to Lower Toarcian. Middle and Upper Toarcian formations are not known in the Algarve. Dogger Calcários oolíticos, c. corálicos, c. pisolíticos, c. calciclásticos, c. dolomíticos e dolomitos de Almadena (Almadena oolitic-limestones, coral-reef-limestones, pisolite-limestones, limeclastic-limestones, dolomitic-limestones and dolomite-rocks) (more than 50 metres), with lagoonal facies. Ascribed to Aalenian-Bathonian-? Callovian. Margas acinzentadas e calcários detríticos com Zoophycos da praia de Mareta (Mareta beach greyish marls and detritical limestones with Zoophycos) (40m) - Pelagic transreef facies with Upper Bajocian and Bathonian ammonites. Calcários margosos e margas da praia de Mareta (Mareta beach pelagic marly-limestones and marls) (110m) - Ascribed to the Callovian on its ammonites. Malm Near Cabo S. Vicente and Sagres the first Upper Jurassic level consists of a yellowish-brown nodular, compact, locally phosphated and ferruginous, sometimes conglomeratic, marly limestone (0,35-1,50m) containing a rich macrofauna, which includes: 1) Callovian forms unknown at Lower Oxfordian; 2) Upper Callovian forms that still survived in Lower and Middle Oxfordian; 3) Lower Oxfordian forms (Mariae and Cordatum Zones); 4) Lower and Middle Oxfordian forms (Mariae to Plicatilis Zone); 5) Middle Oxfordian forms (plicatilis Zone), and some ones appearing in Middle Oxfordian. This condensed deposit is therefore dated from Middle Oxfordian (Plicatilis Zone). The other Upper Jurassic lithostratigraphical units were also mapped but their detailed study is not presented in this work. Correlations between lithostratigraphical and chronostratigraphical scales from P. Choffat, J. Pratsch, C. Palain and from the author are stated. Further correlations are attempted between zonc scales of Carixian-Lower Toarcian and Upper Bajocian-Middle Oxfordian of France, Spain (Asturias, Iberian and Betic Chains), Argel (Orania) and Portugal (northern Tagus basin and Algarve). The study of pyritous fossil assemblages common in Upper Bathonian-Lower Callovian marly levels of the praia da Mareta seems to suggest that these sediments were deposited in a bay or in an almost closed coastal re-entrance virtually without deep water circulation. Although such conditions may occur at any depth one may suppose that these ones actually correspond to an infralittoral neritic environment. The thaphocoenosis collected there are almost entirely composed of nektonic (ammonites, Belemnites) and planktonic (Bositra) faunas. The sedentary (crinoids, brachiopods) or free (sea-urchins, gastropods) epibenthonic forms are very scarce; endobenthonic forms are not known. The palaeontological study of all Nautiloids and Ammonoids of the Liassic and Dogger is presented (except Kosmoceratidae and Perisphinctaceae). Among the thirty one taxa dealt with, one is new (Metaderoceras sp. nov.) and the great majority of the others has been identified for the first time in Algarve. Some others have never been reported before in Portuguese formations. The evolution, during Jurassic times, of the sedimentary basins of the Portuguese plate margin is described. The absence of Cephalopods in the very extensive marly and dolomitic limestones, partly marine, suggests that, during Lower Liassic, palaeogeography underwent no great changes. Dolomitic-limestone with silex nodules from Cabo S. Vicente contain the first ammonites recorded at the base of the Middle Liassic. This facies, although very common in Tethys, is unknown north of the Tagus. The faunal assemblage has a mediterranean to submediterranean character. Comparisons between faunal assemblage" from Algarve with the ones known north of the Tagus show that communications between Boreal Europe and Tethys, virtually non-existent during Lower and Middle Carixian, became very easy during Lower Domerian. In earlier Pliensbachian times two distinct seas were adjacent to the Iberian plate. One, an epicontinental sea with a tethyan fauna, extended southwards from the Meseta margin. Another, was a boreal sea; during its transgressive episodes boreal faunas attained into the basin north of the Tagus. During Middle Carixian and Lower Domerian, owing to simultaneous transgressions, these two seas joined together allowing faunal exchanges along the epicontinental areas which limited the emerging hercynian chains belts. During Liassic, the Algarve belonged undoubtedly to the tethyan submediterranean province. The area north of the Tagus, on the contrary, was a complex realm where subboreal and tethyan affinities alternatively prevailed. In the Algarve the first Middle Jurassic deposits do frequently show lateral thickness reductions as well as unconformities contemporaneous with other generalized disturbances on the sedimentation processes in other parts of Europe. By this time, near Sagres, a barrier reef developed separating lagoonal or ante-reef facies from the transreef pelagic zone. The presence of tethyan fauna, the abundance of Phylloceratidae and the absence of boreal forms allow us to consider the Algarve basin as a submediterranean province. The presence of Callovian pelagic fossiliferous formations in the Loulé area shows that during Middle Jurassic the marl-limestone transreef sedimentation was not confined to the western Algarve. They would extend eastwards where they only can be seen in the core of some anticlines. This is due to the progressive sinking of the meso-cenozoic formations as we proceed towards the South of the Sagres-Algoz-Querença flexure. In the whole of the Peninsule, and as for the Middle Callovian, an important regression can be clearly recognized on the evidence of an erosion surface which strikes obliquely the Middle and Upper Callovian strata. The geographic boundaries of the different faunal provinces are not changed by the presence of many Kosmoceratidae in the phosphate nodules since they are but a minority in comparison with the tethyan forms. An abstract model can be constructed showing that in Western Europe the Kosmoceratidae may have migrated South and westwards through a channel of the sea that linked Paris basin to Poitou and Aquitaine. By migrating between the Iberian meseta and the Armorican massif this fauna reached northern Tagus basin at the beginning of Upper Callovian (Athleta Zone); this south and southwest bound migration would have proceeded, allowing such forms to reach Algarve basin only in latest Callovian times (Lamberti Zone). This migration means that during Middle Jurassic a widely spread North Atlantic sea would exist, flooding the western part of Portugal up to the Poitou.
Resumo:
The evolution of the Lusitanian Basin, localized on the western Iberian margin, is closely associated with the first opening phases of the North Atlantic. It persisted from the Late Triassic to the Early Cretaceous, more precisely until the end of the Early Aptian, and its evolution was conditioned by inherited structures from the variscan basement. The part played by the faults that establish its boundaries, as regards the geometric and kinematic evolution and the organization of the sedimentary bodies, is discussed here, as well as with respect to important faults transversal to the Basin. A basin evolution model is proposed consisting of four rifting episodes which show: i) periods of symmetrical (horst and graben organization) and asymmetrical (half graben organization) geometric evolution; ii) diachronous fracturing; iii) rotation of the main extensional direction; iv) rooting in the variscan basement of the main faults of the basin (predominantly thick skinned style). The analysis and regional comparison, particularly with the Algarve Basin, of the time intervals represented by important basin scale hiatuses near to the renovation of the rifting episodes, have led to assume the occurrence of early tectonic inversions (Callovian–Oxfordian and Tithonian–Berriasian). The latter, however, had a subsequent evolution distinct from the first: there is no subsidence renovation, which is discussed here, and it is related to a magmatic event. Although the Lusitanian Basin is located on a rift margin which is considered non-volcanic, the three magmatic cycles as defined by many authors, particularly the second (approx. 130 to 110 My ?), performed a fundamental part in the mobilization of the Hettangian evaporites, resulting in the main diapiric events of the Lusitanian Basin. The manner and time in which the basin definitely ends its evolution (Early Aptian) is discussed here. Comparisons are established with other west Iberian margin basins and with Newfoundland basins. A model of oceanization of this area of the North Atlantic is also presented, consisting of two events separated by approximately 10 My, and of distinct areas separated by the Nazaré fault. The elaboration of this synthesis was based on: - information contained in previously published papers (1990 – 2000); - field-work carried out over the last years, the results of which have not yet been published; - information gathered from the reinterpretation of geological mapping and geophysical (seismic and well logs) elements, and from generic literature concerning the Mesozoic of the west iberian margin.
Resumo:
The facies distribution along the Jurassic stages in an already well established stratigraphic frame is defined for the three portuguese basins: North of Tagus, Santiago de Cacém and Algarve. The deposits are organized in two sedimentary cycles. The first one from the Liassic to Calovian shows, in the Tagus Basin, a transgression from NW which did not surpass the Meseta present limits. The iniatilly brackish deposits only changed to marine by the end of Lotharingian. The sedimentation, mainly marly during the Liassic became more calcareous since the Aalenian. During the Dogger the basin differentiated into platform deposits towards East and South and open sea zone towards West. This zone underwent a progressive reduction and, during the Callovian, two small basins were individualized: Cabo Mondego basin in the North and Serra de El-Rei-Montejunto in the South. It is from the latter that the second sedimentary cycle (Middle Oxfordian-Portlandian) developed with open sea deposits along the Sintra–Torres Vedras axis surrounded by platform and litoral brackish formations. During the first sedimentary cycle only litoral platform deposits are known in Santiago de Cacém and Algarve basins. During the second sedimentary cycle temporary sea open deposits are known in Santiago de Cacém and Central Algarve.
Resumo:
This paper presents a resume of the results achieved by researchers of the Centro de Estratigrafia e Paleobiologia da U. N. L. on the Neogene of Algarve, since 1977. The detailed study of several profiles as well as that af calcareous nannoplanton, planktonic foraminifera, ostracoda, fishes and mammals allowed to obtain data and correlation elements leading to a new interpretation of the Miocene of Algarve. It was possible to date and to characterize the following units: a) Carbonate formation of Lagos-Portimão, of marine facies, ascribed to the Lower Miocene (Aquitanian? and mainly Burdigalian), possibly attaining the Lower Langhian. b) Essentially arenaceous series of continental facies with a marine intercalation of Arrifão, Olhos de Água and Auramar Hotel beach, middle Miocene (Langhian-Serravallian) in age. c) Marine (tripoli, conglomerates, sands and limestones) deposits of Tunes-Mem Moniz, Ponte das Lavadeiras (Faro), Arroteia (Fuzeta) and Luz de Tavira, corresponding, at least partially, to the first part of the upper Miocene (Lower Tortonian). d) Cacela formation with three members: The lower member (conglomerates and sands), the middle (yellow silts) and the upper ones (gray silts), uppermost Tortonian and mainly Messinian in age. An interpretation of the tectonic and paleogeographic evolution of the portuguese littoral during the Miocene is also presented considering its insertion in the meridional part of the Peninsula (Guadalquivir depression, Betic massif basins and in the spanish Levant in general). Comparisons among the Neogene vulcanism of this region and similar manifestations documented in Algarve (basanite of Figueira-Portimão, etc) are established.
Resumo:
Forty-five species of ostracoda from the Aquitanian of the Lisbon area, belonging in thirty-two genera, are presented. These are the first species belonging to this group reported for the Miocene formations in Portugal. Ostracoda assemblages are typical of fresh water, brackish and marine environments (littoral and inner continental shelf). References are made to the stratigraphically more significant species. Data on the paleoenvironments are also presented. A list of the studied species includes a comparison with their distribution in the Aquitaine and Rhone Miocene basins.
Resumo:
In the southern part of Tagus basin, North of paleozoic rocks of Valverde-Senhor das Chagas (near Alcácer do Sal) horst, a marine transgression has been recognized, Upper Serravallian, and maybe Lower Tortonian in age. There are no earlier marine deposits, and no younger ones are known either. Paleozoic behaved as a barrier separating two basins, distinct at least since Middle Miocene until Upper Pleistocene. Until now, both were regarded as a single entity, the so-called «Sado basin» Southwards (Alvalade basin) there has been a single transgression. It was assummed that it was the same one as the former. Indeed it is not definitely so. Later transgression accounts for Esbarrondadoiro Formation, whose deposits have been ascribed to Tortonian or even to Middle Miocene. However they are Upper Messinian to Lower Zanclean. Esbarrondadoiro Formation is younger than Lower Member of Cacela Formation in Algarve and, with even stronger reason, than the upper-most well dated marine levels in Tagus basin. Age of Miocene units dealt with here has been based on small mammals found in marine sands.
Resumo:
Beaver only had been found in Portugal in a Chalcolithic locality, the Vila Nova de S. Pedro castrum. It has now been identified in the Upper Paleolithic (Solutrean) from Gruta do Caldeirão, near Tomar. The species has been found recently at «Gruta do Almonda»; 4 teeth were collected in bed C, older than a Solutrean sequence (see Anexo for details). The species seems to have been rare, as it was also the case with portuguese Miocene Castoridae Enroxenomys minutus and Chalicomys jaegeri. If account is taken of the presence in the Middle Ages until Castille of words meaning beaver (relared to the popular latin Fiber/Biber), it is obvious that these animais still existed then. Such nouns were largely predominant over rhe rather erudite latin (greek deríved) words as Castor,-óris and derived ones, as it could be expected. This allowed us to recognize that veiro should be the corresponding word with Fiber affinities in archaic portuguese. It was previously supposed to mean only expensive furs then imported into Portugal. Indeed it was also a zoonym. Anywày, beaver should be scarce by XIIIth century since it is not included in the quite detailed price list imposed by the «Lei da Almotaçaria» from December 26, 1253 (see Quadro II). Toponyms in veiro and derived words (fig. 2; Quadro III) (plural, feminines, diminutives, inhabited places) give a resrrictive view of rhe Middle Age distribution. Some of them are certainly older than Portugal itself (firsr half of XIlth cenrury); others existed by the XIVth century bur were probably older. Some rare toponyms seem to be derived from the erudite latin Castor,-óris. Nothing suggests that these words were still in use as zoonyms during the Middle Ages. All toponyms are located in regions near rivers and other freshwaters ecologically suitable for beavers, so we can approximately retrace its former, Middle Age disrribution in Portugal (fig. 2; Quadro III). Most of them are locared in the Center-West and Northwest of Portugal, with a suitable c1imate (rainfall in general over 800 mílimerers per year); the only sure geographical exception is Veiros, in Alto Alentejo province, in a region with comparable precipitations and less dry climate conditions than mosr of the territories South of rhe Tagus. There are less and less of these toponyms towards rhe South and the inner part of the country, and they are enrirely lacking in all drier regions from Trás-os-Montes, Beira, Alentejo beyond Tagus' basin, and in Algarve. Nothing suggests beavers lived there, No post-medieval toponym is known, nor any reference after middle XVth century. No such locality was at, or close by to, any frontier. Hence the hypothesis of veiro (et al.} as meaning but points where expensive furs (supposedly known as veiros in general but without c1early saying from what animal they were obrained from) is to be discarded. During the Middle Ages, beaver discriburion concerned all the main river basins from Minho to Tagus ones. Quite rarefied in rhe XIIIth, the beavers may have disappeared from Portugal during the XVth century. Ecological requiremenrs restricted their former distriburion. Vulnerability to natural causes (i.e., severe drought) and to human pressure may have accounted heavily for this species' extinction. Last (1446) reference for Portugal known to us suggests the species was by then almost extinct.
Resumo:
After a briefhistorical introduction, this paper deals with the main concerned geotectonic units: the Lower Tagus and Alvalade basins, the Western and Southern borders, and their infillings. Most of the Neogene events and record concern areas South of the Iberian Central Chain, a nearly inverse situation as that of Paleogene times. In the most important of these units, the Lower Tagus basin, there are quite thick detrital series, mostly marine in its distal part near Lisboa (albeit with several continental intercalations), and mainly continental in its inner part. Sedimentological record is almost complete since Lowermost to Upper Miocene. The richness ofdata (paleontology, isotope chronology, paleoclimate, etc.) it gives and the possibility of direct marine-continental correlations render this basin one of the more interesting ones in Western Europe. Alvalade basin is separated from the previous one by a barrier ofPaleozoic rocks. Two transgressions events (Upper Tortonian and Messinian in age) are recorded. Active sedimentation may be correlated to Late Miocene tectonics events. In Algarve, chiefly marine units from Lower to Upper Miocene are well developped. The Lower unit (Lagos-Portimao Formation) is best exposed in Western Algarve, but desappears eastwards. Middle Miocene is not as well known, whereas Upper Miocene main outcrops are in Eastern Algarve. Cacela Formation is remarquable for its beautiful fossils. Sedimentation as a whole refletcts the tectonic activity and in special the evolution of the Algarve flexures. There is scant evidence of post-Lower Miocene volcanism, the latest known in Portugal. Pliocene has not been recognized there beyond doubt. . Miocene sediments are much less important to the North of the Central Iberian Chain. Continental beds near Leiria that yielded the well-known "Hisp anotherium fauna" are lower Middle Miocene. Pliocene corresponds to dramatic changes in paleogeography. At Setiibal Peninsula there is some evidence of a minor Lower Pliocene transgression. Continental detrital sediments, often coarse, occupy rather large areas. In Western Portugal between the Seta hal Peninsula and Pombal there is good evidence of a marine Upper Pliocene transgression, followed up by dune sands overlain by marsh clays, diatomites, lignites and boghead levels that can be partly Pleistocene in age.
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
Onshore, the Piacenzianof the Mondego and Lower Tagus Tertiary basins comprises siliciclastic sediments deposited in shallow marine to continental environments. The outcrops of the deposits are relatively widespread in the Aveiro and Seuibal region. A lithostratigraphic synthesis based on the correlation of geological sections, is presented for the two basins. In general, the Piacenzian sediments display a regressive sucession. The Late Tortonian-Zanclean (?) confined drainage pattern changed at the beginning of Piazencian, to fluvial systems draining to the Atlantic, and capturing the drainage of the inner parts of the Hesperic Meseta. The Piacenzian sedimentary sequence post-dates one of the uprising phases during Neogene compression, recorded by a strong regional unconformity. Some local active faulting - as in Lousa, Rio Maior and Senibal- Pinhal Novo - allowed the local thickening of the sedimentary record. Later compressive tectonism continues to generate reverse faulting and diapiric reactivation, affecting those sediments. Currently, the Piacenzian deposits culminates the marginal piedmonts, widely eroded by the Quaternary fluvial dissection.