848 resultados para Hybrid genetic algorithm
Resumo:
Bicycling as an active mode of transport can offer great individual and societal benefits. Allocating space for bicycle facilities is the key to promoting cycling as bicyclists perceive better safety and convenience in separate bikeways. In this thesis, a method is proposed for optimizing the selection and scheduling of capacity enhancements in road networks while also optimizing the allocation of road space to bicycle lanes. The goal is to determine what fraction of the available space should be allocated to bicycles, as the network evolves, in order to minimize the present value of the total cost of the system cost. The allocation method is combined with a genetic algorithm to select and schedule road expansion projects under certain budget constraints.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
Les travaux de ce mémoire traitent du problème d’ordonnancement et d’optimisation de la production dans un environnement de plusieurs machines en présence de contraintes sur les ressources matérielles dans une usine d’extrusion plastique. La minimisation de la somme pondérée des retards est le critère économique autour duquel s’articule cette étude car il représente un critère très important pour le respect des délais. Dans ce mémoire, nous proposons une approche exacte via une formulation mathématique capable des donner des solutions optimales et une approche heuristique qui repose sur deux méthodes de construction de solution sérielle et parallèle et un ensemble de méthodes de recherche dans le voisinage (recuit-simulé, recherche avec tabous, GRASP et algorithme génétique) avec cinq variantes de voisinages. Pour être en totale conformité avec la réalité de l’industrie du plastique, nous avons pris en considération certaines caractéristiques très fréquentes telles que les temps de changement d’outils sur les machines lorsqu’un ordre de fabrication succède à un autre sur une machine donnée. La disponibilité des extrudeuses et des matrices d’extrusion représente le goulot d’étranglement dans ce problème d’ordonnancement. Des séries d’expérimentations basées sur des problèmes tests ont été effectuées pour évaluer la qualité de la solution obtenue avec les différents algorithmes proposés. L’analyse des résultats a démontré que les méthodes de construction de solution ne sont pas suffisantes pour assurer de bons résultats et que les méthodes de recherche dans le voisinage donnent des solutions de très bonne qualité. Le choix du voisinage est important pour raffiner la qualité de la solution obtenue. Mots-clés : ordonnancement, optimisation, extrusion, formulation mathématique, heuristique, recuit-simulé, recherche avec tabous, GRASP, algorithme génétique
Resumo:
Ce projet porte, dans un souci d’efficacité énergétique, sur la récupération d’énergie des rejets thermiques à basse température. Une analyse d’optimisation des technologies dans le but d’obtenir un système de revalorisation de chaleur rentable fait objet de cette recherche. Le but sera de soutirer la chaleur des rejets thermiques et de la réappliquer à un procédé industriel. Réduire la consommation énergétique d’une usine entre habituellement en conflit avec l’investissement requis pour les équipements de revalorisation de chaleur. Ce projet de maitrise porte sur l’application d’optimisations multiobjectives par algorithme génétique (GA) pour faciliter le design en retrofit des systèmes de revalorisation de chaleur industrielle. L’originalité de cette approche consiste à l’emploi du «fast non-dominant sorting genetic algorithm» ou NSGA-II dans le but de trouver les solutions optimales entre la valeur capitale et les pertes exergétiques des réseaux d’échangeurs de chaleur et de pompes à chaleur. Identifier les solutions optimales entre le coût et l’efficacité exergétique peut ensuite aider dans le processus de sélection d’un design approprié en considérant les coûts énergétiques. Afin de tester cette approche, une étude de cas est proposée pour la récupération de chaleur dans une usine de pâte et papier. Ceci inclut l’intégration d’échangeur de chaleur Shell&tube, d’échangeur à contact direct et de pompe à chaleur au réseau thermique existant. Pour l’étude de cas, le projet en collaboration avec Cascades est constitué de deux étapes, soit de ciblage et d’optimisation de solutions de retrofit du réseau d’échangeur de chaleur de l’usine de tissus Cascades à Kinsley Falls. L’étape de ciblage, basée sur la méthode d’analyse du pincement, permet d’identifier et de sélectionner les modifications de topologie du réseau d’échangeurs existant en y ajoutant de nouveaux équipements. Les scénarios résultants passent ensuite à l’étape d’optimisation où les modèles mathématiques pour chaque nouvel équipement sont optimisés afin de produire une courbe d’échange optimal entre le critère économique et exergétique. Pourquoi doubler l’analyse économique d’un critère d’exergie? D’abord, parce que les modèles économiques sont par définition de nature imprécise. Coupler les résultats des modèles économiques avec un critère exergétique permet d’identifier des solutions de retrofit plus efficaces sans trop s’éloigner d’un optimum économique. Ensuite, le rendement exergétique permet d’identifier les designs utilisant l’énergie de haute qualité, telle que l’électricité ou la vapeur, de façon plus efficace lorsque des sources d’énergie de basse qualité, telles que les effluents thermiques, sont disponibles. Ainsi en choisissant un design qui détruit moins d’exergie, il demandera un coût énergétique moindre. Les résultats de l’étude de cas publiés dans l’article montrent une possibilité de réduction des coûts en demande de vapeur de 89% tout en réduisant la destruction d’exergie de 82%. Dans certains cas de retrofit, la solution la plus justifiable économiquement est également très proche de la solution à destruction d’exergie minimale. L’analyse du réseau d’échangeurs et l’amélioration de son rendement exergétique permettront de justifier l’intégration de ces systèmes dans l’usine. Les diverses options pourront ensuite être considérées par Cascades pour leurs faisabilités technologiques et économiques sachant qu’elles ont été optimisées.
Resumo:
Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.
Resumo:
This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.
Resumo:
The genetic algorithm is a very efficient tool to solve optimization problems. On the other hand, the classroom assignation in any education center, particularly those that does not have enough quantity of classrooms for the courseʼs demand converts it in an optimization problem. In the Department of Computer Science (Universidad de Costa Rica) this work is carried out manually every six months. Besides, at least two persons of the department are dedicated full time to this labor for one week or more. The present article describes an automatic solution that not only reduces the response time to seconds but it also finds an optimal solution in the majority of the cases. In addition gives flexibility in using the program when the information involved with classroom assignation has to be updated. The interface is simple an easy to use.
Resumo:
Combinatorial optimization problems have been strongly addressed throughout history. Their study involves highly applied problems that must be solved in reasonable times. This doctoral Thesis addresses three Operations Research problems: the first deals with the Traveling Salesman Problem with Pickups and Delivery with Handling cost, which was approached with two metaheuristics based on Iterated Local Search; the results show that the proposed methods are faster and obtain good results respect to the metaheuristics from the literature. The second problem corresponds to the Quadratic Multiple Knapsack Problem, and polynomial formulations and relaxations are presented for new instances of the problem; in addition, a metaheuristic and a matheuristic are proposed that are competitive with state of the art algorithms. Finally, an Open-Pit Mining problem is approached. This problem is solved with a parallel genetic algorithm that allows excavations using truncated cones. Each of these problems was computationally tested with difficult instances from the literature, obtaining good quality results in reasonable computational times, and making significant contributions to the state of the art techniques of Operations Research.
Resumo:
In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew (Sorex araneus) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using X-statistics and one migrant per generation using F-statistics. Hierarchical F- and R-statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F-ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G-test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT-MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.
Resumo:
Studies of hybrid zones can inform our understanding of reproductive isolation and speciation. Two species of brown lemur (Eulemur rufifrons and E. cinereiceps) form an apparently stable hybrid zone in the Andringitra region of south-eastern Madagascar. The aim of this study was to identify factors that contribute to this stability. We sampled animals at 11 sites along a 90-km transect through the hybrid zone and examined variation in 26 microsatellites, the D-loop region of mitochondrial DNA, six pelage and nine morphological traits; we also included samples collected in more distant allopatric sites. Clines in these traits were noncoincident, and there was no increase in either inbreeding coefficients or linkage disequilibrium at the centre of the zone. These results could suggest that the hybrid zone is maintained by weak selection against hybrids, conforming to either the tension zone or geographical selection-gradient model. However, a closer examination of clines in pelage and microsatellites indicates that these clines are not sigmoid or stepped in shape but instead plateau at their centre. Sites within the hybrid zone also occur in a distinct habitat, characterized by greater seasonality in precipitation and lower seasonality in temperature. Together, these findings suggest that the hybrid zone may follow the bounded superiority model, with exogenous selection favouring hybrids within the transitional zone. These findings are noteworthy, as examples supporting the bounded superiority model are rare and may indicate a process of ecologically driven speciation without geographical isolation.