892 resultados para Human skin color Genetic aspects


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the study was to perform a genetic linkage analysis for eye color, for comparative data. Similarity in eye color of mono- and dizygotic twins was rated by the twins' mother, their father and/or the twins themselves. For 4748 twin pairs the similarity in eye color was available on a three point scale (not at all alike-somewhat alike-completely alike), absolute eye color on individuals was not assessed. The probability that twins were alike for eye color was calculated as a weighted average of the different responses of all respondents on several different time points. The mean probability of being alike for eye color was 0.98 for MZ twins (2167 pairs), whereas the mean probability for DZ twins was 0.46 (2537 pairs), suggesting very high heritability for eye color. For 294 DZ twin pairs genome-wide marker data were available. The probability of being alike for eye color was regressed on the average amount of IBD sharing. We found a peak LOD-score of 2.9 at chromosome 15q, overlapping with the region recently implicated for absolute ratings of eye color in Australian twins [Zhu, G., Evans, D. M., Duffy, D. L., Montgomery, G. W., Medland, S. E., Gillespie, N. A., Ewen, K. R., Jewell, M., Liew, Y. W., Hayward, N. K., Sturm, R. A., Trent, J. M., and Martin, N. G. (2004). Twin Res. 7:197-210] and containing the OCA2 gene, which is the major candidate gene for eye color [Sturm, R. A. Teasdale, R. D, and Box, N. F. (2001). Gene 277:49-62]. Our results demonstrate that comparative measures on relatives can be used in genetic linkage analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular epidemiologic profile of human metapneumovirus (hMPV) infection has likely been skewed toward certain genetic subtypes because of assay-design issues, and no comprehensive studies have been conducted to date. Here, reverse-transcription polymerase chain reaction was used to screen 10,319 specimens from patients presenting to hospitals with suspected respiratory tract infections during 2001 - 2004. After analysis of 727 Australian hMPV strains, 640 were assigned to 1 of 4 previously described subtypes. hMPV was the most common pathogen detected, and subtype B1 was the most common lineage. Concurrent, annual circulation of all 4 hMPV subtypes in our study population was common, with a single, usually different hMPV subtype predominating in each year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As exemplified by aborted calcified liver lesions commonly found in patients from endemic areas, Echinococcus multilocularis metacestodes develop only in a minority of individuals exposed to infection with the papasite. Clinical research has disclosed some aspects of the survival strategy of E. multilocularis in human hosts. Clinical observations in liver transplantation and AIDS suggest that suppression of cellular/Th1related immunity increases disease severity. Most of the studies have stressed a role for CD8+ T cells and for Interleukin-10 in the development of tolerance. A spontaneous secretion of IL-10 by the PBMC seems to be the immunological hallmark of patients with progressive forms of alveolar echinococcosis (AE). IL-10-induced inhibition of effector macrophages, but also of antigen-presenting dendritic cells, may be operating and allowing parasite growth and survival. The genetic correlates of susceptibility to infection with E. multilocularis are clearer in humans than in the mouse model. A significant link between MHC polymorphism and clinical presentation of AE has been shown, and the spontaneous secretion of IL-10 in patients with a progressive AE is higher in patients with the HLA DR3+, DQ2+ haplotype. Clustering of cases in certain families, in communities otherwise exposed to similar risk factors, also points to immuno-genetic predisposition factors that may allow the larva to escape host immunity more easily. The first stage of larval development may be crucial in producing danger signals stimulating the initial production of cytokines. Therapeutic use of Interferon alpha is an attempt to foil the survival strategy of E. multilocularis. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research thesis is concerned with the human factors aspects of industrial alarm systems within human supervisory control tasks. Typically such systems are located in central control rooms, and the information may be presented via visual display units. The thesis develops a human, rather than engineering, centred approach to the assessment, measurement and analysis of the situation. A human factors methodology was employed to investigate the human requirements through: interviews, questionnaires, observation and controlled experiments. Based on the analysis of current industrial alarm systems in a variety of domains (power generation, manufacturing and coronary care), it is suggested that often designers do not pay due considerations to the human requirements. It is suggested that most alarm systems have severe shortcomings in human factors terms. The interviews, questionnaire and observations led to the proposal of 'alarm initiated activities' as a framework for the research to proceed. The framework comprises of six main stages: observe, accept, analyse, investigate, correct and monitor. This framework served as a basis for laboratory research into alarm media. Under consideration were speech-based alarm displays and visual alarm displays. Non-speech auditory displays were the subject of a literature review. The findings suggest that care needs to be taken when selecting the alarm media. Ideally it should be chosen to support the task requirements of the operator, rather than being arbitrarily assigned. It was also indicated that there may be some interference between the alarm initiated activities and the alarm media, i.e. information that supports one particular stage of alarm handling may interfere with another.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The process of astrogliosis, or reactive gliosis, is a typical response of astrocytes to a wide range of physical and chemical injuries. The up-regulation of the astrocyte specific glial fibrillary acidic protein (GFAP) is a hallmark of reactive gliosis and is widely used as a marker to identify the response. In order to develop a reliable, sensitive and high throughput astrocyte toxicity assay that is more relevant to the human response than existing animal cell based models, the U251-MG, U373-MG and CCF-STTG 1 human astrocytoma cell lines were investigated for their ability to exhibit reactive-like changes following exposure to ethanol, chloroquine diphosphate, trimethyltin chloride and acrylamide. Cytotoxicity analysis showed that the astrocytic cells were generally more resistant to the cytotoxic effects of the agents than the SH-SY5Y neuroblastoma cells. Retinoic acid induced differentiation of the SH-SY5Y line was also seen to confer some degree of resistance to toxicant exposure, particularly in the case of ethanol. Using a cell based ELISA for GFAP together with concurrent assays for metabolic activity and cell number, each of the three cell lines responded to toxicant exposure by an increase in GFAP immunoreactivity (GFAP-IR), or by increased metabolic activity. Ethanol, chloroquine diphosphate, trimethyltin chloride and bacterial lipopolysaccharide all induced either GFAP or MTT increases depending upon the cell line, dose and exposure time. Preliminary investigations of additional aspects of astrocytic injury indicated that IL-6, but not TNF-α. or nitric oxide, is released following exposure to each of the compounds, with the exception of acrylamide. It is clear that these human astrocytoma cell lines are capable of responding to toxicant exposure in a manner typical of reactive gliosis and are therefore a valuable cellular model in the assessment of in vitro neurotoxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classic hypothesis of Livingstone and Hubel (1984, 1987) proposed two types of color pathways in primate visual cortex based on recordings from single cells: a segregated, modularpathway that signals color but provides little information about shape or form and a second pathway that signals color differences and so defines forms without the need to specify their colors. A major problem has been to reconcile this neurophysiological hypothesis with the behavioral data. A wealth of psychophysical studies has demonstrated that color vision has orientation-tuned responses and little impairment on form related tasks, but these have not revealed any direct evidence for nonoriented mechanisms. Here we use a psychophysical method of subthreshold summation across orthogonal orientations for isoluminant red-green gratings in monocular and dichoptic viewing conditions to differentiate between nonoriented and orientation-tuned responses to color contrast. We reveal nonoriented color responses at low spatial frequencies (0.25-0.375 c/deg) under monocular conditions changing to orientation-tuned responses at higher spatial frequencies (1.5 c/deg) and under binocular conditions. We suggest that two distinct pathways coexist in color vision at the behavioral level, revealed at different spatial scales: one is isotropic, monocular, and best equipped for the representation of surface color, and the other is orientation-tuned, binocular, and selective for shape and form. This advances our understanding of the organization of the neural pathways involved in human color vision and provides a strong link between neurophysiological and behavioral data. © 2013 ARVO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.

Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.

Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.

Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.

These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human genetics has been experiencing a wave of genetic discoveries thanks to the development of several technologies, such as genome-wide association studies (GWAS), whole-exome sequencing, and whole genome sequencing. Despite the massive genetic discoveries of new variants associated with human diseases, several key challenges emerge following the genetic discovery. GWAS is known to be good at identifying the locus associated with the patient phenotype. However, the actually causal variants responsible for the phenotype are often elusive. Another challenge in human genetics is that even the causal mutations are already known, the underlying biological effect might remain largely ambiguous. Functional evaluation plays a key role to solve these key challenges in human genetics both to identify causal variants responsible for the phenotype, and to further develop the biological insights from the disease-causing mutations.

We adopted various methods to characterize the effects of variants identified in human genetic studies, including patient genetic and phenotypic data, RNA chemistry, molecular biology, virology, and multi-electrode array and primary neuronal culture systems. Chapter 1 is a broader introduction for the motivation and challenges for functional evaluation in human genetic studies, and the background of several genetics discoveries, such as hepatitis C treatment response, in which we performed functional characterization.

Chapter 2 focuses on the characterization of causal variants following the GWAS study for hepatitis C treatment response. We characterized a non-coding SNP (rs4803217) of IL28B (IFNL3) in high linkage disequilibrium (LD) with the discovery SNP identified in the GWAS. In this chapter, we used inter-disciplinary approaches to characterize rs4803217 on RNA structure, disease association, and protein translation.

Chapter 3 describes another avenue of functional characterization following GWAS focusing on the novel transcripts and proteins identified near the IL28B (IFNL3) locus. It has been recently speculated that this novel protein, which was named IFNL4, may affect the HCV treatment response and clearance. In this chapter, we used molecular biology, virology, and patient genetic and phenotypic data to further characterize and understand the biology of IFNL4. The efforts in chapter 2 and 3 provided new insights to the candidate causal variant(s) responsible for the GWAS for HCV treatment response, however, more evidence is still required to make claims for the exact causal roles of these variants for the GWAS association.

Chapter 4 aims to characterize a mutation already known to cause a disease (seizure) in a mouse model. We demonstrate the potential use of multi-electrode array (MEA) system for the functional characterization and drug testing on mutations found in neurological diseases, such as seizure. Functional characterization in neurological diseases is relatively challenging and available systematic tools are relatively limited. This chapter shows an exploratory research and example to establish a system for the broader use for functional characterization and translational opportunities for mutations found in neurological diseases.

Overall, this dissertation spans a range of challenges of functional evaluations in human genetics. It is expected that the functional characterization to understand human mutations will become more central in human genetics, because there are still many biological questions remaining to be answered after the explosion of human genetic discoveries. The recent advance in several technologies, including genome editing and pluripotent stem cells, is also expected to make new tools available for functional studies in human diseases.