903 resultados para Human genome - Theses
Resumo:
UNLABELLED We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus.
Resumo:
Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.
Resumo:
Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^
Resumo:
The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^
Resumo:
DNA sequence variation is currently a major source of data for studying human origins, evolution, and demographic history, and for detecting linkage association of complex diseases. In this dissertation, I investigated DNA variation in worldwide populations from two ∼10 kb autosomal regions on 22q11.2 (noncoding) and 1q24 (introns). A total of 75 variant sites were found among 128 human sequences in the 22q11.2 region, yielding an estimate of 0.088% for nucleotide diversity (π), and a total of 52 variant sites were found among 122 human sequences in the 1q24 region with an estimated π value of 0.057%. The data from these two regions and a 10 kb noncoding region on Xq13.3 all show a strong excess of low-frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The effective population sizes estimated from the three regions were 11,000, 12,700, and 8,600, respectively, which are close to the commonly used value of 10,000. In each of the two autosomal regions, the age of the most recent common ancestor (MRCA) was estimated to be older than 1 million years among all the sequences and ∼600,000 years among non-African sequences, providing first evidence from autosomal noncoding or intronic regions for a genetic history of humans much more ancient than the emergence of modern humans. The ancient genetic history of humans indicates no severe bottleneck during the evolution of humans in the last half million years; otherwise, much of the ancient genetic history would have been lost during a severe bottleneck. This study strongly suggests that both the “out of Africa” and the multiregional models are too simple for explaining the evolution of modern humans. A compilation of genome-wide data revealed that nucleotide diversity is highest in autosomal regions, intermediate in X-linked regions, and lowest in Y-linked regions. The data suggest the existence of background selection or selective sweep on Y-linked loci. In general, the nucleotide diversity in humans is low compared to that in chimpanzee and Drosophila populations. ^
Resumo:
The mammalian cerebral neocortex is a complex six-layered structure containing multiple types of neurons. Pyramidal neurons of the neocortex are formed during development in an inside-out manner, by which deep layer (DL) neurons are generated first, and upper layer (UL) neurons are generated last. Neurons within the six-layered neocortex express unique markers for their position, showing whether they are subplate, deep layer, upper layer, or Cajal-Retzius neurons. The sequential generation of cortical layers, which exists in vivo, has been partially recapitulated in vitro by differentiation of mouse embryonic stem cells (Gaspard et al., 2008) and human embryonic stem cells (hESC) (Eiraku et al., 2008). The timeline of generation of cortical neurons from hESC is still not well defined, and could be very important in the future of cell therapy. In this study we will define timeline for UL and DL neurons for our experimental paradigm as well as test the effects of fibroblast growth factors (FGF) 2 and 8 on this neuronal differentiation. Recent papers suggest that FGFs are critical for forebrain patterning (Storm et al., 2003). Neuronal differentiation after treatment with either FGF2 or FGF8 from hESCs will be examined and the proportion of specific neuronal markers will be analyzed using immunocytochemistry. Our results show that the generated pyramidal neurons will express DL and UL laminar markers in vitro as they do in vivo and that the presence of FGF8 in induction media creates a proliferative effect, while FGF2 induces hESC to differentiate at a higher rate.
Resumo:
The purpose of this research is to explore the growth and formation of the head and neck from embryological development through puberty in order to understand how this knowledge is necessary for the development of dental and medical treatments and procedures. This is a necessary aspect of the medical and dental school curriculum at the University of Connecticut Health Center Schools of Medicine and Dental Medicine that needs to be incorporated into the current study of embryology for first-year students. Working with Dr. Christine Niekrash, D.M.D, this paper will cover the embryology and growth of the head, face and oral cavity. The goal of this project will be to organize the information and recognize the resources needed to successfully introduce this part of human physiology to the UConn dental and medical students. One area in which this information is particularly relevant is the facial and oral deformities that can occur throughout fetal development.
Resumo:
The Universal Declaration of Human Rights (UDHR) states that education should be "directed to the full development of the human personality and to the strengthening of respect for human rights and fundamental freedoms... promote understanding, tolerance and friendship among all nations, racial or religious groups." This study surveyed 53 teachers on their views of Human Rights Education, including their familiarity with the concept, their self-efficacy with teaching it, and conditions that would increase the likelihood of their teaching it. The study found that, regardless of familiarity with the topic, years of teaching experience, or school location (urban/suburban), most teachers were open to teaching Human Rights Education. They did identify the need for better resources in the form of lesson plans, teaching materials, and professional training. In addition, support from other teachers, administration, and parents was felt to be important in order for them to undertake Human Rights Education. The best strategy to move forward with Human Rights Education would be to provide resources and support for teachers so that we can be living up to the expectations put forth in the UDHR.
Resumo:
Human embryonic stem cells (hESCs) have the potential to differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and efficient manner. Recent developments in the field have showed some success in obtaining myogenic cells from hESCs through a mesenchymal stem cell (MSC)-like intermediate population. MSCs, which are an adult stem cell population typically derived from the bone marrow, are capable of generating multiple cell types including skeletal muscle. The aim of this study was to develop an efficient method that derives myoblasts from an MSC-like intermediate. To accomplish this goal, we first set out to isolate and expand the MSC-like intermediate from hESCs differentiated in vitro. Difficulties in reproducing published cell-differentiation methodologies, which represent a significant and familiar challenge in hESC research, are highlighted in this report.