920 resultados para High-energy events


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel metal hydride (Ni-MH) batteries have emerged as an alternative for replacement of nickel-cadmium batteries, because of their more environmental compatibility and high energy capacity. In this article, we described the properties and applications for Ni-MH batteries, giving some emphasis on the metal-hydride electrode, including the description of composition, the charge storage capacity and the discharge profile. The key component of the nickel-metal hydride electrode is a hydrogen storage alloy whose composition is formulated to obtain a high stable material over a large number of charge-discharge cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photofragmentation of a core-excited halogenated compound, Halotane (C2F3HClBr), generally used as anesthetic by inhalation, has been studied using high energy photons and electrons near C 1s ionization edge (~ 300 eV), using time-of-flight mass spectrometry in multicoincidence mode. We observe strong differences between the molecular fragmentation induced by photons and electron impact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and inexpensive time-of-flight mass spectrometer, dedicated to the study of gas-phase ionization processes induced by high energy electrons (0.5 - 3.0 keV), is described. The spectrometer design is based on the Wiley-McLaren principle, with a total length of about 18 cm. As a demonstration of the performance of the apparatus, mass spectra for Ar, CH4, CO2, and SF6, obtained at 1 keV electron energy, are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a basic study on the processing of spent Zn/MnO2 and alkaline batteries in acid or basic media. Promising results were obtained after fusion with NaOH or KHSO4, which allowed a good separation between Mn from Zn and these metals from other metal components. Processing of spent batteries is a complex procedure, which includes disassembly of these materials, the use of corrosive and high-energy consuming media and the management of final residues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The global demand for palm oil is growing, thus prompting an increase in the global production particularly in Malaysia and Indonesia. Such increasing demand for palm oil is due to palm oil’s relatively cheap price and versatile advantage both in edible and non-edible applications. Along with the increasing demand for palm oil, particularly for the production of biofuel, is a heated debate on its sustainability. Ecological degradation, climate change and social issues are among the main sustainability issues pressing the whole palm oil industry today. Clean Development Mechanism (CDM) projects fulfilling the imperatives of the Kyoto Protocol are starting to gain momentum in Malaysia as reflected by the increasing registration of CDM projects in the palm oil mills. Most CDM projects in palm oil mills are on waste-to-energy, cocomposting, and methane recovery with the latter being the most common. The study on greenhouse gases (GHG) in the milling process points that biogas collection and energy utilisation has the greatest positive effect on GHG balance. On the other hand, empty fruit bunches (EFB) end-use as energy and high energy efficiency of the mill have the least effect on GHG balance of the mill. The range of direct GHG emissions from the palm oil mill is from 2.5 to 27 gCO2e/MJCPO, while the range of GHG emissions with all indirect and avoided emissions included is from -9 to 29 gCO2e/MJCPO. Comparing this GHG balance result with that of the EU RES-Directive suggests a further check on the values and emissions consideration of the latter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentified gamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Galactic microquasars are certainly one of the most recent additions to the field of high energy Astrophysics. These new objects are just X-ray binaries with the ability to generate relativistic jets and their interest has been growing during the last decade. Today, they represent primary targets for all space based observatories working in the X-ray and [gamma]-ray domains. Behind such interest, there is hope that their study will assist us to understand some of the analog phenomena observed in distant quasars and active galactic nuclei, wich share with microquasars practically the same scaled-up physics. Microquasars are also believed to be among the different kind of sources responsible for the violent and ever changing appearance of the [gamma]-ray ski. In this paper we review the general situation of the microquasar topic, their identification and study, including comments on the recent observational and theoretical discoveries most relevant in our opinion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RX J1826.2-1450/LS 5039 has been recently proposed to be a radio emitting high mass X-ray binary. In this paper, we present an analysis of its X-ray timing and spectroscopic properties using different instruments on board the RXTE satellite. The timing analysis indicates the absence of pulsed or periodic emission on time scales of 0.02-2000 s and 2-200 d, respectively. The source spectrum is well represented by a power-law model, plus a Gaussian component describing a strong iron line at 6.6 keV. Significant emission is seen up to 30 keV, and no exponential cut-off at high energy is required. We also study the radio properties of the system according to the GBI-NASA Monitoring Program. RX J1826.2-1450/LS 5039 continues to display moderate radio variability with a clearly non-thermal spectral index. No strong radio outbursts have been detected after several months.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high sensitivity and excellent timing accuracy of Geiger mode avalanche photodiodes makes them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase of the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 µm and a high integration 0.13 µm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rainfall samples collected in the downtown area of São Paulo city, during 2003, exhibited average concentrations of cadmium, lead and copper of 1.33, 8.52 and 49.5 nmol L-1, respectively. Among the major ions, NH4+ was the predominant species followed by NO3-, SO4(2-) and Ca2+, with volume weighed mean (VWM) concentrations of 37.1, 20.1, 11.9 and 10.8 µmol L-1, respectively. All the determined species showed high inter-events variability, including free H+ ions whose VWM concentration was 4.03 µmol L-1, corresponding to a pH value of 5.39.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid-state silicon detectors have replaced conventional ones in almost all recent high-energy physics experiments. Pixel silicon sensors don't have any alternative in the area near the interaction point because of their high resolution and fast operation speed. However, present detectors hardly withstand high radiation doses. Forthcoming upgrade of the LHC in 2014 requires development of a new generation of pixel detectors which will be able to operate under ten times increased luminosity. A planar fabrication technique has some physical limitations; an improvement of the radiation hardness will reduce sensitivity of a detector. In that case a 3D pixel detector seems to be the most promising device which can overcome these difficulties. The objective of this work was to model a structure of the 3D stripixel detector and to simulate electrical characteristics of the device. Silvaco Atlas software has been used for these purposes. The structures of single and double sided dual column detectors with active edges were described using special command language. Simulations of these detectors have shown that electric field inside an active area has more uniform distribution in comparison to the planar structure. A smaller interelectrode space leads to a stronger field and also decreases the collection time. This makes the new type of detectors more radiation resistant. Other discovered advantages are the lower full depletion voltage and increased charge collection efficiency. So the 3D stripixel detectors have demonstrated improved characteristics and will be a suitable replacement for the planar ones.