895 resultados para Hierarchical task analysis
Resumo:
We introduce a type of 2-tier convolutional neural network model for learning distributed paragraph representations for a special task (e.g. paragraph or short document level sentiment analysis and text topic categorization). We decompose the paragraph semantics into 3 cascaded constitutes: word representation, sentence composition and document composition. Specifically, we learn distributed word representations by a continuous bag-of-words model from a large unstructured text corpus. Then, using these word representations as pre-trained vectors, distributed task specific sentence representations are learned from a sentence level corpus with task-specific labels by the first tier of our model. Using these sentence representations as distributed paragraph representation vectors, distributed paragraph representations are learned from a paragraph-level corpus by the second tier of our model. It is evaluated on DBpedia ontology classification dataset and Amazon review dataset. Empirical results show the effectiveness of our proposed learning model for generating distributed paragraph representations.
Resumo:
Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
Resumo:
Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-based approaches require expensive manual annotation effort. In this paper, we propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon with preferences on expectations of sentiment labels of those lexicon words being expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie-review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than existing weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.
Resumo:
The leadership categorisation theory suggests that followers rely on a hierarchical cognitive structure in perceiving leaders and the leadership process, which consists of three levels; superordinate, basic and subordinate. The predominant view is that followers rely on Implicit Leadership Theories (ILTs) at the basic level in making judgments about managers. The thesis examines whether this presumption is true by proposing and testing two competing conceptualisations; namely the congruence between the basic level ILTs (general leader) and actual manager perceptions, and subordinate level ILTs (job-specific leader) and actual manager. The conceptualisation at the job-specific level builds on context-related assertions of the ILT explanatory models: leadership categorisation, information processing and connectionist network theories. Further, the thesis addresses the effects of ILT congruence at the group level. The hypothesised model suggests that Leader-Member Exchange (LMX) will act as a mediator between ILT congruence and outcomes. Three studies examined the proposed model. The first was cross-sectional with 175 students reporting on work experience during a 1-year industrial placement. The second was longitudinal and had a sample of 343 students engaging in a business simulation in groups with formal leadership. The final study was a cross-sectional survey in several organisations with a sample of 178. A novel approach was taken to congruence analysis; the hypothesised models were tested using Latent Congruence Modelling (LCM), which accounts for measurement error and overcomes the majority of limitations of traditional approaches. The first two studies confirm the traditional theorised view that employees rely on basic-level ILTs in making judgments about their managers with important implications, and show that LMX mediates the relationship between ILT congruence and work-related outcomes (performance, job satisfaction, well-being, task satisfaction, intragroup conflict, group satisfaction, team realness, team-member exchange, group performance). The third study confirms this with conflict, well-being, self-rated performance and commitment as outcomes.
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Gender differences have been well established in verbal and spatial abilities but few studies have examined if these differences also extend into the domain of working memory in terms of behavioural differences and brain activation. The conclusions that can be drawn from these studies are not clear cut but suggest that even though gender differences might not be apparent from behavioural measures, the underlying neural substrate associated with working memory might be different in men and women. Previous research suggests activation in a network of frontal and parietal regions during working memory tasks. This study aimed to investigate gender differences in patterns of brain activation during a verbal version of the N-back working memory task, which incorporates the effects of increased demands on working memory. A total of 50 healthy subjects, aged 18 to 58 years, that were equally split by gender were recruited matched for age, levels of education and ethnicity. All subjects underwent functional magnetic resonance imaging. We found that men and women performed equally well in terms of accuracy and response times, while using similar brain regions to the same degree. Our observations indicate that verbal working memory is not affected by gender at the behavioural or neural level, and support the findings of a recent meta-analysis by Hyde ([2005]: Sex Roles 53:717-725) that gender differences are generally smaller than intra-gender differences in many cognitive domains. © 2009 Wiley-Liss, Inc.
Resumo:
Purpose: Phonological accounts of reading implicate three aspects of phonological awareness tasks that underlie the relationship with reading; a) the language-based nature of the stimuli (words or nonwords), b) the verbal nature of the response, and c) the complexity of the stimuli (words can be segmented into units of speech). Yet, it is uncertain which task characteristics are most important as they are typically confounded. By systematically varying response-type and stimulus complexity across speech and non-speech stimuli, the current study seeks to isolate the characteristics of phonological awareness tasks that drive the prediction of early reading. Method: Four sets of tasks were created; tone stimuli (simple non-speech) requiring a non-verbal response, phonemes (simple speech) requiring a non-verbal response, phonemes requiring a verbal response, and nonwords (complex speech) requiring a verbal response. Tasks were administered to 570 2nd grade children along with standardized tests of reading and non-verbal IQ. Results: Three structural equation models comparing matched sets of tasks were built. Each model consisted of two 'task' factors with a direct link to a reading factor. The following factors predicted unique variance in reading: a) simple speech and non-speech stimuli, b) simple speech requiring a verbal response but not simple speech requiring a non-verbal-response, and c) complex and simple speech stimuli. Conclusions: Results suggest that the prediction of reading by phonological tasks is driven by the verbal nature of the response and not the complexity or 'speechness' of the stimuli. Findings highlight the importance of phonological output processes to early reading.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Resumo:
In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results.
Resumo:
The basic matrixes method is suggested for the Leontief model analysis (LM) with some of its components indistinctly given. LM can be construed as a forecast task of product’s expenses-output on the basis of the known statistic information at indistinctly given several elements’ meanings of technological matrix, restriction vector and variables’ limits. Elements of technological matrix, right parts of restriction vector LM can occur as functions of some arguments. In this case the task’s dynamic analog occurs. LM essential complication lies in inclusion of variables restriction and criterion function in it.
Resumo:
The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".