920 resultados para Heterogeneous nanostructures
Resumo:
Luminescent Eu3+-containing polyphosphate tungstate aqueous colloidal systems were prgared and studied as a function of the relative polyphosphate tungstate content. In polyphosphate-rich solutions, Eu-H- ions occupy cagelike sites composed of phosphate groups from the metaphosphate chains. In these sites, an average number of 0.5 water molecule coordinates to an Eu3+ ion and the 500 emission quantum efficiency is 0.22. Tungstatc addition leads to important modifications in neighboring Eu3+ leading to coordination sites in the aqueous medium where metal ions are completely hidden from interactions with solvent molecules. Transmission electron microscopy results clearly show \V-rich nanoparticles with sizes between 5 and 10 nm for all tungstate relative concentrations. For high tungstatc relative contents (above 30 mol %), spectroscopic results suggest the presence of Eu34- in polyoxometalate (P0M)-like sites by comparison with the well-known decatungstoeuropate [EuW10O36](9-) structure. These new aqueous colloids display surprisingly high 5llo emission quantum efficiencies of ca 80% because of the strong ligand field provided by tungstate POM ligands and the complete absence of water molecules from the Eu3+ first coordination shell.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.
Resumo:
Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a temperature-voltage phase diagram. © 2005 Materials Research Society.
Resumo:
We investigate electrical properties of InAs/InP semiconductor nanostructures by conductive atomic force microscopy (C-AFM) and current measurements at low temperatures in processed devices. Different conductances and threshold voltages for current onset were observed for each type of nanostructure. In particular, the extremity of the wire could be compared to a dot with similar dimensions. The processed devices were used in order to access the in-plane conductance of an assembly of a reduced number of nanostructures. Here, fluctuations on I-V curves at low temperatures (<40 K) were observed. At these low temperatures and for a suitable range of applied voltages, random telegraph noise (RTN) in the current was observed for devices with dots. These fluctuations can be associated to electrons trapped in dots, as suggested by numerical simulations. A crossover from a semiconductor-like to a metallic transport behavior is also observed for similar parameters. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
To simplify computer management, several system administrators are adopting advanced techniques to manage software configuration on grids, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. This paper discusses the feasibility of a distributed virtual machine environment, named Flexlab: a new approach for computer management that combines virtualization and distributed system architectures as the basis of a management system. Flexlab is able to extend the coverage of a computer management solution beyond client operating system limitations and also offers a convenient hardware abstraction, decoupling software and hardware, simplifying computer management. The results obtained in this work indicate that FlexLab is able to overcome the limitations imposed by the coupling between software and hardware, simplifying the management of homogeneous and heterogeneous grids. © 2009 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper was proposed the development of an heterogeneous system using the microcontroller (AT90CANI28) where the protocol model CAN and the standard IEEE 802.15.4 are connected. This module is able to manage and monitor sensors and actuators using CAN and, through the wireless standard 802.15.4, communicate with the other network modules. © 2011 IEEE.
Resumo:
The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.
Resumo:
Includes bibliography