920 resultados para Hb variants
Resumo:
Murine models with modified gene function as a result of N-ethyl-N-nitrosourea (ENU) mutagenesis have been used to study phenotypes resulting from genetic change. This study investigated genetic factors associated with red blood cell (RBC) physiology and structural integrity that may impact on blood component storage and transfusion outcome. Forward and reverse genetic approaches were employed with pedigrees of ENU-treated mice using a homozygous recessive breeding strategy. In a “forward genetic” approach, pedigree selection was based upon identification of an altered phenotype followed by exome sequencing to identify a causative mutation. In a second strategy, a “reverse genetic” approach based on selection of pedigrees with mutations in genes of interest was utilised and, following breeding to homozygosity, phenotype assessed. Thirty-three pedigrees were screened by the forward genetic approach. One pedigree demonstrated reticulocytosis, microcytic anaemia and thrombocytosis. Exome sequencing revealed a novel single nucleotide variation (SNV) in Ank1 encoding the RBC structural protein ankyrin-1 and the pedigree was designated Ank1EX34. The reticulocytosis and microcytic anaemia observed in the Ank1EX34 pedigree were similar to clinical features of hereditary spherocytosis in humans. For the reverse genetic approach three pedigrees with different point mutations in Spnb1 encoding RBC protein spectrin-1β, and one pedigree with a mutation in Epb4.1, encoding band 4.1 were selected for study. When bred to homozygosity two of the spectrin-1β pedigrees (a, b) demonstrated increased RBC count, haemoglobin (Hb) and haematocrit (HCT). The third Spnb1 mutation (spectrin-1β c) and mutation in Epb4.1 (band 4.1) did not significantly affect the haematological phenotype, despite these two mutations having a PolyPhen score predicting the mutation may be damaging. Exome sequencing allows rapid identification of causative mutations and development of databases of mutations predicted to be disruptive. These tools require further refinement but provide new approaches to the study of genetically defined changes that may impact on blood component storage and transfusion outcome.
Resumo:
In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant 'Pukekohe dwarf' with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak.
Resumo:
We have established and characterized a series of variant cell lines in which to identify the critical factors associated with E2-induced malignant progression, and the acquisition to tamoxifen resistance in human breast cancer. Sublines of the hormone-dependent MCF-7 cell line (MCF7/MIII and MCF7/LCC1) form stable, invasive, estrogen independent tumors in the mammary fat pads of ovariectomized athymic nude mice. These cells retain expression of both estrogen (ER) and progesterone receptors (PGR), but retain sensitivity to each of the major structural classes of antiestrogens. The tamoxifen-resistant MCF7/LCC2 cells retain sensitivity to the inhibitory effects of the steroidal antiestrogen ICI 182780. By comparing the parental hormone-dependent and variant hormone-independent cells, we have demonstrated an altered expression of some estrogen regulated genes (PGR, pS2, cathepsin D) in the hormone-independent variants. Other genes remain normally estrogen regulated (ER, laminin receptor, EGF-receptor). These data strongly implicate the altered regulation of a specific subset or network of estrogen regulated genes in the malignant progression of human breast cancer. Some of the primary response genes in this network may exhibit dose-response and induction kinetics similar to pS2, which is constitutively upregulated in the MCF7/MIII, MCF7/LCC1 and MCF7/LCC2 cells.
Resumo:
Critical phenotypic changes that occur during the progression of breast cancer include the loss of hormone-dependence, acquired resistance to systemic therapies, and increased metastatic potential. We have isolated a series of MCF-7 human breast cancer variants which exhibit hormone-independent growth, antiestrogen resistance, and increased metastatic potential. Analysis of the phenotypes of these variants strongly suggests that changes in the expression of specific genes may be critical to the generation of phenotypic diversity in the process of malignant progression in breast cancer. Epigenetic changes may contribute significantly to the generation of these phenotypic changes observed during breast cancer progression. Many of the characteristics of the progressed phenotypes appear to have arisen in response to appropriate selective pressures (growth in ovariectomized nude mice; growth in the presence of antiestrogens). These observations are consistent with the concept of clonal selection and expansion in the process of malignant progression.
Resumo:
Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight into the complexities underlying cancer drug resistance. Recent data now implicate intratumoural heterogeneity as a major driver of drug resistance. Single cell sequencing studies that identified multiple genetically distinct variants within human tumours clearly demonstrate the heterogeneous nature of human tumours. The major contributors to intratumoural heterogeneity are (i) genetic variation, (ii) stochastic processes, (iii) the microenvironment and (iv) cell and tissue plasticity. Each of these factors impacts on drug sensitivity. To deliver curative therapies to patients, modification of current therapeutic strategies to include methods that estimate intratumoural heterogeneity and plasticity will be essential.
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
In this paper we propose a method that integrates the no- tion of understandability, as a factor of document relevance, into the evaluation of information retrieval systems for con- sumer health search. We consider the gain-discount evaluation framework (RBP, nDCG, ERR) and propose two understandability-based variants (uRBP) of rank biased precision, characterised by an estimation of understandability based on document readability and by different models of how readability influences user understanding of document content. The proposed uRBP measures are empirically contrasted to RBP by comparing system rankings obtained with each measure. The findings suggest that considering understandability along with topicality in the evaluation of in- formation retrieval systems lead to different claims about systems effectiveness than considering topicality alone.
Resumo:
The political and bureaucratic discourse surrounding non-profit sector reform is centred on streamlining the regulatory framework. Phrases such as 'one-stop shop','reducing red tape' and 'duplicative, burdensome and unclear requirements' fill press releases, government reports and discussion papers. In this chapter, I examine quantitative measures of the current regulatory compliance burden facing non-profit organisations in Australia as a benchmark for measuring progress over the coming years. I focus on regulatory compliance estimates for four key stages of non-profit enterprise activity non-profit enterprise start-up and registrations; fundraising;grant paperwork; and regulation proportionate to the size of the non-profit enterprise.
Resumo:
Archimedes is reported as famously saying: 'Give me a place to stand and I will move the earth.' He was referring to the power of levers. His point was that a person of ordinary capacity with a place to stand, a fulcrum and a level could change the path of planets. This principle of physics is a metaphor for how the common law has moved over the last millennium. Courts have found a stable foundation on which to stand, such as the constitutional bedrock or well-grounded precedent, and, using cases as fulcrums and legal principles as levers, the have moved the law. Australia is at a critical juncture in the development of the law of charities. The High Court of Australia has held that political purposes can be charitable in certain circumstances. The Parliament of Australia has not only enshrined this in a statutory definition of charity but has done so with a preamble to the legislation which affirms the basis for this development in residing in the 'unique nature and diversity of charities and the distinctive and important role that they play in Australia'.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Resumo:
This project improved the detection and classification of very weakly expressed RhD variants in the Australian blood donor panel and contributed to the knowledge of anti-D reactivity patterns of RHD alleles that are undescribed. As such, the management of donations possessing these RHD alleles can be improved upon and the overall safety of transfusion medicine pertaining to the Rh blood group system will be increased. Future projects at ARCBS will be able to utilise the procedures developed in this project, thereby decreasing throughput time. The specificity of current testing will be improved and the need for outsourced RHD testing diminished.
Resumo:
language (such as C++ and Java). The model used allows to insert watermarks on three “orthogonal” levels. For the first level, watermarks are injected into objects. The second level watermarking is used to select proper variants of the source code. The third level uses transition function that can be used to generate copies with different functionalities. Generic watermarking schemes were presented and their security discussed.
Resumo:
For the first time in 400 years a number of leading common law nations have, fairly simultaneously, embarked on charity law reform leading to an encoding of key definitional matters in charity legislation. This book provides an analysis of international case law developments on the ever growing range of issues now being generated by clashes between human rights, religion and charity law. Kerry O'Halloran identifies and assesses the agenda of 'moral imperatives', such as abortion and gay marriage that delineate the legal interface and considers their significance for those with and those without religious belief. By assessing jurisdictional differences in the law relating to religion/human rights/charity the author provides a picture of the evolving 'culture wars' that now typify and differentiates societies in western nations including the USA, England and Wales, Ireland, Australia, Canada and New Zealand.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.