882 resultados para Harpring, Jack
Resumo:
Background: Men can be hard to reach with face-to-face health-related information, while increasingly, research shows that they are seeking health information from online sources. Recognizing this trend, there is merit in developing innovative online knowledge translation (KT) strategies capable of translating research on men’s health into engaging health promotion materials. While the concept of KT has become a new mantra for researchers wishing to bridge the gap between research evidence and improved health outcomes, little is written about the process, necessary skills, and best practices by which researchers can develop online knowledge translation.
Objective: Our aim was to illustrate some of the processes and challenges involved in, and potential value of, developing research knowledge online to promote men’s health.
Methods: We present experiences of KT across two case studies of men’s health. First, we describe a study that uses interactive Web apps to translate knowledge relating to Canadian men’s depression. Through a range of mechanisms, study findings were repackaged with the explicit aim of raising awareness and reducing the stigma associated with men’s depression and/or help-seeking. Second, we describe an educational resource for teenage men about unintended pregnancy, developed for delivery in the formal Relationship and Sexuality Education school curricula of Ireland, Northern Ireland (United Kingdom), and South Australia. The intervention is based around a Web-based interactive film drama entitled “If I Were Jack”.
Results: For each case study, we describe the KT process and strategies that aided development of credible and well-received online content focused on men’s health promotion. In both case studies, the original research generated the inspiration for the interactive online content and the core development strategy was working with a multidisciplinary team to develop this material through arts-based approaches. In both cases also, there is an acknowledgment of the need for gender and culturally sensitive information. Both aimed to engage men by disrupting stereotypes about men, while simultaneously addressing men through authentic voices and faces. Finally, in both case studies we draw attention to the need to think beyond placement of content online to delivery to target audiences from the outset.
Conclusions: The case studies highlight some of the new skills required by academics in the emerging paradigm of translational research and contribute to the nascent literature on KT. Our approach to online KT was to go beyond dissemination and diffusion to actively repackage research knowledge through arts-based approaches (videos and film scripts) as health promotion tools, with optimal appeal, to target male audiences. Our findings highlight the importance of developing a multidisciplinary team to inform the design of content, the importance of adaptation to context, both in terms of the national implementation context and consideration of gender-specific needs, and an integrated implementation and evaluation framework in all KT work.
Resumo:
commissioned by Adrian Jack for ICA Music series, ICA. London
Resumo:
Case C-258/11 Peter Sweetman, Ireland, Attorney General, Minister for the Environment, Heritage and Local Government v An Bord Pleanála
(Not yet reported)
Resumo:
Identifying processes that shape species geographical ranges is a prerequisite for understanding environmental change. Currently, species distribution modelling methods do not offer credible statistical tests of the relative influence of climate factors and typically ignore other processes (e.g. biotic interactions and dispersal limitation). We use a hierarchical model fitted with Markov Chain Monte Carlo to combine ecologically plausible niche structures using regression splines to describe unimodal but potentially skewed response terms. We apply spatially explicit error terms that account for (and may help identify) missing variables. Using three example distributions of European bird species, we map model results to show sensitivity to change in each covariate. We show that the overall strength of climatic association differs between species and that each species has considerable spatial variation in both the strength of the climatic association and the sensitivity to climate change. Our methods are widely applicable to many species distribution modelling problems and enable accurate assessment of the statistical importance of biotic and abiotic influences on distributions.
Resumo:
There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species-area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species-area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km x 10 km) and regional (290 km x 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.
Resumo:
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.
Resumo:
Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.
Resumo:
1. The prediction and mapping of climate in areas between climate stations is of increasing importance in ecology.
2. Four categories of model, simple interpolation, thin plate splines, multiple linear regression and mixed spline-regression, were tested for their ability to predict the spatial distribution of temperature on the British mainland. The models were tested by external cross-verification.
3. The British distribution of mean daily temperature was predicted with the greatest accuracy by using a mixed model: a thin plate spline fitted to the surface of the country, after correction of the data by a selection from 16 independent topographical variables (such as altitude, distance from the sea, slope and topographic roughness), chosen by multiple regression from a digital terrain model (DTM) of the country.
4. The next most accurate method was a pure multiple regression model using the DTM. Both regression and thin plate spline models based on a few variables (latitude, longitude and altitude) only were comparatively unsatisfactory, but some rather simple methods of surface interpolation (such as bilinear interpolation after correction to sea level) gave moderately satisfactory results. Differences between the methods seemed to be dependent largely on their ability to model the effect of the sea on land temperatures.
5. Prediction of temperature by the best methods was greater than 95% accurate in all months of the year, as shown by the correlation between the predicted and actual values. The predicted temperatures were calculated at real altitudes, not subject to sea-level correction.
6. A minimum of just over 30 temperature recording stations would generate a satisfactory surface, provided the stations were well spaced.
7. Maps of mean daily temperature, using the best overall methods are provided; further important variables, such as continentality and length of growing season, were also mapped. Many of these are believed to be the first detailed representations at real altitude.
8. The interpolated monthly temperature surfaces are available on disk.