991 resultados para HYDROXY COMPOUNDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coronavirus main protease, Mpro, is considered a major target for drugs suitable to combat coronavirus infections including the severe acute respiratory syndrome (SARS). In this study, comprehensive HPLC- and FRET-substrate-based screenings of various electrophilic compounds were performed to identify potential Mpro inhibitors. The data revealed that the coronaviral main protease is inhibited by aziridine- and oxirane-2-carboxylates. Among the trans-configured aziridine-2,3-dicarboxylates the Gly-Gly-containing peptide 2c was found to be the most potent inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction ( 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous extracts were prepared from five barley crystal malts (color range 15-440 degrees EBC, European Brewing Convention units). Antioxidant activity was determined by using the 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) (ABTS(.+)) radical cation scavenging method. Antioxidant activity increased with increasing color value although the rate of increase decreased with increasing color value. Color was measured in CIELAB space. Extracts of the 15, 23, and 72 degrees EBC malts followed the same dilution pathway as did the 148 degrees EBC sample at higher dilution levels, indicating that they could each be used to give the same color by appropriate dilution. The 440 degrees EBC sample followed a different dilution pathway, indicating that different compounds were responsible for color in this extract. Fifteen selected volatile compounds were monitored using gas chromatography/mass spectrometry (GC/MS). Levels of methylpropanal, 2-methylbutanal, and 3-methylbutanal were highest for the 72 degrees EBC sample. When odor threshold values of the selected compounds were taken into account, 3-methylbutanal was the most important contributor to flavor., Relationships between levels of the lipid oxidation products, hexanal and (E)-2-nonenal, and antioxidant activity were complex, and increasing antioxidant activity for samples in the range of 15-148 degrees EBC did-not result in reduced levels of these lipid-derived compounds. When different colored malt extracts were diluted to give the same a* and b* values, calculated antioxidant activity and amounts of 3-methylbutanal, hexanal, and (E)-2-nonenal decreased with increasing degrees EBC value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of the frying oil as a heat-transfer medium and as a source of flavor precursors for the formation of potato chip flavor was investigated. Potato slices were fried in palmolein or silicone fluid, and the volatile flavor compounds of the resulting chips were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. Although the heat-transfer coefficients of the oils did not differ significantly, their temperature profiles during frying were different, probably due to greater turbulence on placing potato slices in palmolein, leading to more efficient heat transfer. Levels of Strecker aldehydes and sulfides in chips fried in the two media were not significantly different, but levels of pyrazines were significantly higher in palmolein-fried chips. Amounts of 2,4-decadienal were also significantly higher in palmolein-fried chips, but there was no significant difference in hexanal levels between the samples.