986 resultados para HL-60 cell
Resumo:
We introduced a spectral clustering algorithm based on the bipartite graph model for the Manufacturing Cell Formation problem in [Oliveira S, Ribeiro JFF, Seok SC. A spectral clustering algorithm for manufacturing cell formation. Computers and Industrial Engineering. 2007 [submitted for publication]]. It constructs two similarity matrices; one for parts and one for machines. The algorithm executes a spectral clustering algorithm on each separately to find families of parts and cells of machines. The similarity measure in the approach utilized limited information between parts and between machines. This paper reviews several well-known similarity measures which have been used for Group Technology. Computational clustering results are compared by various performance measures. (C) 2008 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/mu l, 1 mu l) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.
Resumo:
Objective: The purpose of this study was to evaluate the inflammatory cell subset proportions in the upper gingival connective tissue, including mature dendritic cells (DC) in elderly and younger patients with generalized chronic periodontitis in order to further understand the effect of aging on gingival inflammatory phenomenon. Methods: Gingival tissue specimens presenting chronic periodontitis from 8 elderly patients aged >75 (test group, group T) and from 8 younger patients aged 50-60 (considered as controls, group C) were analysed by immunohistochemistry using monoclonal antibodies against CD45RB, CD4, CD8, CD19, CD68, DC-SIGN, DC-LAMP molecules. The number of each immunolabelled cells subset was counted using image analysis. Results: The difference in the number of CD45RB + leucocytes in the upper gingival connective tissue between groups was not significant permitting to use it as reference. As compared. to group C, the lymphocyte subsets/CD45RB + leucocytes ratios tended to decrease in group T but the decrease was significant only for CD4 + T lymphocytes/ CD45RB + cells ratio (p < 0.03). On the opposite, the ratios of antigen-presenting cells DC-SIGN + cells/CD45RB + cells and DC-LAMP + cells/CD45RB + cells were significantly increased;(p < 0.03 and <0.0001, respectively) in group T. Moreover, in group T the DC-LAMP + cells/DC-SIGN + cells ratio was significantly increased (p < 0.05) showing an increased number of matured dendritic cells. Conclusion: During chronic periodontitis in elderly patients, our results show a decrease in the ratio of gingival CD4 + lymphocyte subset associated with an increase in the ratios of antigen-presenting cells subsets and more particularly maturated DC-LAMP + dendritic cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 pM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 pM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 mu M, respectively. The critical micellar concentration (CMC) of ODPC was 200 mu M. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (Delta H) variation of 7.3 kcal mol(-1). The presence of 25 mu M ODPC decreased T(c) and Delta H to 393 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 mu M destabilized the liposomes (36.3 degrees C. 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Natural killer (NK) cells are innate effector lymphocytes necessary for defence against stressed, microbe-infected, or malignant cells. NK cells kill target cells by either of two major mechanisms that require direct contact between NK cells and target cells. In the first pathway, cytoplasmic granule toxins, predominantly a membrane-disrupting protein known as perforin, and a family of structurally related serine C, proteases (granzymes) with various substrate specificities, are secreted by exocytosis and together induce apoptosis of the target cell. The granule-exocytosis pathway potently activates cell-death mechanisms that operate through the activation of apoptotic cysteine proteases (caspases), but can also cause cell death in the absence of activated caspases. The second pathway involves the engagement of death receptors (e.g. Fas/CD95) on target cells by their cognate ligands (e.g. FasL on NK cells, resulting in classical caspase-dependent apoptosis. The comparative role of these pathways in the pathophysiology of many diseases is being dissected by analyses of gene-targeted mice that lack these molecules, and humans who have genetic mutations affecting these pathways. We are also now learning that the effector function of NK cells is controlled by interactions involving specific NK cell receptors and their cognate ligands, either on target cells, or other cells of the immune system. This review will discuss the functional importance of NK cell cytotoxicity and the receptor/ligand interactions that control these processes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.