986 resultados para HEAT CURRENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imagining a disturbance made on a compressible boundary layer with the help of a heat source, the critical viscous sublayer, through which the skin friction at any point on a surface is connected with the heat transferred from a heated element embedded in it, has been estimated. Under similar conditions of external flow (Ray1)) the ratio of the critical viscous sublayer to the undisturbed boundary layer thickness is about one-tenth in the laminar case and one hundredth in the turbulent case. These results are similar to those (cf.1)) found in shock wave boundary layer interaction problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the heat kernel for arbitrary tensor fields on S-3 and (Euclidean) AdS(3) using a group theoretic approach. We use these results to also obtain the heat kernel on certain quotients of these spaces. In particular, we give a simple, explicit expression for the one loop determinant for a field of arbitrary spin s in thermal AdS(3). We apply this to the calculation of the one loop partition function of N = 1 supergravity on AdS(3). We find that the answer factorizes into left- and right-moving super Virasoro characters built on the SL(2, C) invariant vacuum, as argued by Maloney and Witten on general grounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study an abelian Chern-Simons theory on a five-dimensional manifold with boundary. We find it to be equivalent to a higher-derivative generalization of the abelian Wess-Zumino-Witten model on the boundary. It contains a U(1) current algebra with an operational extension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.