765 resultados para Grouping, clustering, campi, associazione
Resumo:
Asynchrony is an important grouping cue for separating sound mixtures. A harmonic incremented in level makes a reduced contribution to vowel timbre when it begins before the other components. This contribution can be partly restored by adding a captor tone in synchrony with, and one octave above, the leading portion of the incremented harmonic [Darwin and Sutherland, Q. J. Exp. Psychol. A 36, 193-208 (1984)]. The captor is too remote to evoke adaptation in peripheral channels tuned to the incremented harmonic, and so the restoration effect is usually attributed to the grouping of the leading portion with the captor. However, results are presented that contradict this interpretation. Captor efficacy does not depend on a common onset, or harmonic relations, with the leading component. Rather, captor efficacy is influenced by frequency separation, and extends to about 1.5 oct above the leading component. Below this cutoff, the captor effect is equivalent to attenuating the leading portion of the incremented harmonic by about 6 dB. These results indicate that high-level grouping does not govern the captor effect. Instead, it is proposed that the partial restoration of the contribution of an asynchronous component to vowel timbre depends on broadband inhibition within the central auditory system. © 2006 Acoustical Society of America.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
In an isolated syllable, a formant will tend to be segregated perceptually if its fundamental frequency (F0) differs from that of the other formants. This study explored whether similar results are found for sentences, and specifically whether differences in F0 (?F0) also influence across-formant grouping in circumstances where the exclusion or inclusion of the manipulated formant critically determines speech intelligibility. Three-formant (F1 + F2 + F3) analogues of almost continuously voiced natural sentences were synthesized using a monotonous glottal source (F0 = 150 Hz). Perceptual organization was probed by presenting stimuli dichotically (F1 + F2C + F3; F2), where F2C is a competitor for F2 that listeners must resist to optimize recognition. Competitors were created using time-reversed frequency and amplitude contours of F2, and F0 was manipulated (?F0 = ±8, ±2, or 0 semitones relative to the other formants). Adding F2C typically reduced intelligibility, and this reduction was greatest when ?F0 = 0. There was an additional effect of absolute F0 for F2C, such that competitor efficacy was greater for higher F0s. However, competitor efficacy was not due to energetic masking of F3 by F2C. The results are consistent with the proposal that a grouping “primitive” based on common F0 influences the fusion and segregation of concurrent formants in sentence perception.
Resumo:
Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.
Resumo:
Clustering of Pick bodies (PB) was studied in the frontal and temporal lobe in 10 cases of Pick's disease (PD). Pick bodies exhibited clustering in 47/50 (94%) brain areas analysed. In 20/50 (40%) brain areas, PB were present in a single large cluster ≤ 6400 μm in diameter, in 27/50 (54%) PB occurred in smaller clusters (200-3200 μm in diameter) which exhibited a regular periodicity relative to the tissue boundary, in 1/50 (2%) there was a regular distribution of individual PB and in 2/50 (4%), PB were randomly distributed. Mean cluster size of the PB was greater in the dentate gyrus compared with the inferior temporal gyrus and lateral occipitotemporal gyrus. Mean cluster size of PB in a brain region was positively correlated with the mean density of PB. Hence, PB exhibit essentially the same spatial patterns as senile plaques and neurofibrillary tangles in Alzheimer's disease (AD) and Lewy bodies in Dementia with Lewy bodies (DLB).
Resumo:
Clustering of Lewy bodies (LB) was studied in four regions of the medial temporal lobe in 12 cases of dementia with LB (DLB). LB exhibited clustering in 67/70 (96%) brain areas analysed. In 34/70 (49%) analyses, LB were present in a single large cluster ≤6400 μm in diameter, in 33/70 (47%) LB occurred in smaller clusters 200-3200 μm in diameter which exhibited a regular periodicity relative to the tissue boundary and in 3/70 (4%), LB were randomly distributed. A regular pattern of LB clusters was observed equally frequently in the cortex and hippocampus, in upper and lower cortical laminae and in 'pure' cases of DLB with negligible Alzheimer's disease (AD) pathology compared with cases of AD with DLB. In cortical regions, there was no significant correlation between LB cluster size in the upper and lower cortical laminae. The regular periodicity of LB clusters suggests that LB develop in relation to the cells of origin of specific cortico-cortical and cortico-hippocampal projections.
Resumo:
The clustering pattern of diffuse, primitive and classic β-amyloid (Aβ) deposits was studied in the upper laminae of the frontal cortex of 9 patients with sporadic Alzheimer's disease (AD). Aβ stained tissue was counterstained with collagen type IV antiserum to determine whether the clusters of Aβ deposits were related to blood vessels. In all patients, Aβ deposits and blood vessels were clustered, with in many patients, a regular periodicity of clusters along the cortex parallel to the pia. The classic Aβ deposit clusters coincided with those of the larger blood vessels in all patients and with clusters of smaller blood vessels in 4 patients. Diffuse deposit clusters were related to blood vessels in 3 patients. Primitive deposit clusters were either unrelated to or negatively correlated with the blood vessels in six patients. Hence, Aβ deposit subtypes differ in their relationship to blood vessels. The data suggest a direct and specific role for the larger blood vessels in the formation of amyloid cores in AD. © 1995.
Resumo:
The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.
Resumo:
The spatial distribution patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits were studied in areas of the medial temporal lobe in 12 cases of Down's Syndrome (DS) 35 to 67 years of age. Large clusters of diffuse deposits were present in the youngest patients; cluster size then declined with patient age but increased again in the oldest patients. By contrast, the cluster sizes of the primitive and classic deposits increased with age to a maximum in patients 45 to 55 and 60 years of age respectively and declined in size in the oldest patients. In the parahippocampal gyrus (PHG), the clusters of the primitive deposits were most highly clustered in cases of intermediate age. The data suggest a developmental sequence in DS in which Abeta is deposited initially in the form of large clusters of diffuse deposits that are then gradually replaced by clusters of primitive and classic deposits. The oldest patients were an exception to this sequence in that the pattern of clustering resembled that of the youngest patients.
Resumo:
Clustering of cellular neurofibrillary tangles (NFT) was studied in the cerebral cortex and hippocampus in cases of Alzheimer’s disease (AD) using a regression method. The objective of the study was to test the hypothesis that clustering of NFTs reflects the degeneration of the cortico-cortical pathways. In 25/38 (66%) of analyses of individual brain areas, a significant peak to trough and peak to peak distance was obtained suggesting that the clusters of NFTs were regularly distributed in bands parallel to the tissue boundary. In analyses of cortical tissues with regularly distributed clusters, peak to peak distance was between 1000 and 1600 microns in 13/24 (54%) of analyses, >1600 microns in 10/24 (42%) and <1000 microns in 1/24 (4%) of analyses. A regular distribution of NFT clusters was less evident in the CA sectors of the hippocampus than in the cortex. Hence, in a significant proportion of brain areas, the spacing of NFT clusters along the cerebral cortex was consistent with the predicted distribution of the cells of origin of specific cortico-cortical projections. However, in many brain regions, the sizes of the NFT clusters were larger than predicted which may be attributable to the spread of NFTs to adjacent groups of cells as the disease progresses.
Resumo:
A sudden increase in the amplitude of a component often causes its segregation from a complex tone, and shorter rise times enhance this effect. We explored whether this also occurs in implant listeners (n?=?8). Condition 1 used a 3.5-s “complex tone” comprising concurrent stimulation on five electrodes distributed across the array of the Nucleus CI24 implant. For each listener, the baseline stimulus level on each electrode was set at 50% of the dynamic range (DR). Two 1-s increments of 12.5%, 25%, or 50% DR were introduced in succession on adjacent electrodes within the “inner” three of those activated. Both increments had rise and fall times of 30 and 970 ms or vice versa. Listeners reported which increment was higher in pitch. Some listeners performed above chance for all increment sizes, but only for 50% increments did all listeners perform above chance. No significant effect of rise time was found. Condition 2 replaced amplitude increments with decrements. Only three listeners performed above chance even for 50% decrements. One exceptional listener performed well for 50% decrements with fall and rise times of 970 and 30 ms but around chance for fall and rise times of 30 and 970 ms, indicating successful discrimination based on a sudden rise back to baseline stimulation. Overall, the results suggest that implant listeners can use amplitude changes against a constant background to pick out components from a complex, but generally these must be large compared with those required in normal hearing. For increments, performance depended mainly on above-baseline stimulation of the target electrodes, not rise time. With one exception, performance for decrements was typically very poor.
Resumo:
A sudden change applied to a single component can cause its segregation from an ongoing complex tone as a pure-tone-like percept. Three experiments examined whether such pure-tone-like percepts are organized into streams by extending the research of Bregman and Rudnicky (1975). Those authors found that listeners struggled to identify the presentation order of 2 pure-tone targets of different frequency when they were flanked by 2 lower frequency “distractors.” Adding a series of matched-frequency “captor” tones, however, improved performance by pulling the distractors into a separate stream from the targets. In the current study, sequences of discrete pure tones were substituted by sequences of brief changes applied to an otherwise constant 1.2-s complex tone. Pure-tone-like percepts were evoked by applying 6-dB increments to individual components of a complex comprising harmonics 1–7 of 300 Hz (Experiment 1) or 0.5-ms changes in interaural time difference to individual components of a log-spaced complex (range 160–905 Hz; Experiment 2). Results were consistent with the earlier study, providing clear evidence that pure-tone-like percepts are organized into streams. Experiment 3 adapted Experiment 1 by presenting a global amplitude increment either synchronous with, or just after, the last captor prior to the 1st distractor. In the former case, for which there was no pure-tone-like percept corresponding to that captor, the captor sequence did not aid performance to the same extent as previously. It is concluded that this change to the captor-tone stream partially resets the stream-formation process, and so the distractors and targets became likely to integrate once more. (PsycINFO Database Record (c) 2011 APA, all rights reserved)
Resumo:
Onset asynchrony is an important cue for auditory scene analysis. For example, a harmonic of a vowel that begins before the other components contributes less to the perceived phonetic quality. This effect was thought primarily to involve high-level grouping processes, because the contribution can be partly restored by accompanying the leading portion of the harmonic (precursor) with a synchronous captor tone an octave higher, and hence too remote to influence adaptation of the auditory-nerve response to that harmonic. However, recent work suggests that this restoration effect arises instead from inhibitory interactions relatively early in central auditory processing. The experiments reported here have reevaluated the role of adaptation in grouping by onset asynchrony and explored further the inhibitory account of the restoration effect. Varying the frequency of the precursor in the range ± 10% relative to the vowel harmonic (Experiment 1), or introducing a silent interval from 0 to 320 ms between the precursor and the vowel (Experiment 2), both produce effects on vowel quality consistent with those predicted from peripheral adaptation or recovery from it. However, there were some listeners for whom even the smallest gap largely eliminated the effect of the precursor. Consistent with the inhibitory account of the restoration effect, a contralateral pure tone whose frequency is close to that of the precursor is highly effective at restoring the contribution of the asynchronous harmonic (Experiment 3). When the frequencies match, lateralization cues arising from binaural fusion of the precursor and contralateral tone may also contribute to this restoration. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
We investigate the sensitivity of a Markov model with states and transition probabilities obtained from clustering a molecular dynamics trajectory. We have examined a 500 ns molecular dynamics trajectory of the peptide valine-proline-alanine-leucine in explicit water. The sensitivity is quantified by varying the boundaries of the clusters and investigating the resulting variation in transition probabilities and the average transition time between states. In this way, we represent the effect of clustering using different clustering algorithms. It is found that in terms of the investigated quantities, the peptide dynamics described by the Markov model is sensitive to the clustering; in particular, the average transition times are found to vary up to 46%. Moreover, inclusion of nonphysical sparsely populated clusters can lead to serious errors of up to 814%. In the investigation, the time step used in the transition matrix is determined by the minimum time scale on which the system behaves approximately Markovian. This time step is found to be about 100 ps. It is concluded that the description of peptide dynamics with transition matrices should be performed with care, and that using standard clustering algorithms to obtain states and transition probabilities may not always produce reliable results.