861 resultados para Grid-connected
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories --- this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
Although the tube theory is successful in describing entangled polymers qualitatively, a more quantitative description requires precise and consistent definitions of its parameters. Here we investigate the simplest model of entangled polymers, namely a single Rouse chain in a cubic lattice of line obstacles, and illustrate the typical problems and uncertainties of the tube theory. In particular we show that in general one needs 3 entanglement related parameters, but only 2 combinations of them are relevant for the long-time dynamics. Conversely, the plateau modulus can not be determined from these two parameters and requires a more detailed model of entanglements with explicit entanglement forces, such as the slipsprings model. It is shown that for the grid model the Rouse time within the tube is larger than the Rouse time of the free chain, in contrast to what the standard tube theory assumes.
Resumo:
Stakeholder analysis plays a critical role in business analysis. However, the majority of the stakeholder identification and analysis methods focus on the activities and processes and ignore the artefacts being processed by human beings. By focusing on the outputs of the organisation, an artefact-centric view helps create a network of artefacts, and a component-based structure of the organisation and its supply chain participants. Since the relationship is based on the components, i.e. after the stakeholders are identified, the interdependency between stakeholders and the focal organisation can be measured. Each stakeholder is associated with two types of dependency, namely the stakeholder’s dependency on the focal organisation and the focal organisation’s dependency on the stakeholder. We identify three factors for each type of dependency and propose the equations that calculate the dependency indexes. Once both types of the dependency indexes are calculated, each stakeholder can be placed and categorised into one of the four groups, namely critical stakeholder, mutual benefits stakeholder, replaceable stakeholder, and easy care stakeholder. The mutual dependency grid and the dependency gap analysis, which further investigates the priority of each stakeholder by calculating the weighted dependency gap between the focal organisation and the stakeholder, subsequently help the focal organisation to better understand its stakeholders and manage its stakeholder relationships.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
Details are given of a boundary-fitted mesh generation method for use in modelling free surface flow and water quality. A numerical method has been developed for generating conformal meshes for curvilinear polygonal and multiply-connected regions. The method is based on the Cauchy-Riemann conditions for the analytic function and is able to map a curvilinear polygonal region directly onto a regular polygonal region, with horizontal and vertical sides. A set of equations have been derived for determining the lengths of these sides and the least-squares method has been used in solving the equations. Several numerical examples are presented to illustrate the method.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
A representation of the conformal mapping g of the interior or exterior of the unit circle onto a simply-connected domain Ω as a boundary integral in terms ofƒ|∂Ω is obtained, whereƒ :=g -l. A product integration scheme for the approximation of the boundary integral is described and analysed. An ill-conditioning problem related to the domain geometry is discussed. Numerical examples confirm the conclusions of this discussion and support the analysis of the quadrature scheme.
Resumo:
The occurrence of wind storms in Central Europe is investigated with respect to large-scale atmospheric flow and local wind speeds in the investigation area. Two different methods of storm identification are applied for Central Europe as the target region: one based on characteristics of large-scale flow (circulation weather types, CWT) and the other on the occurrence of extreme wind speeds. The identified events are examined with respect to the NAO phases and CWTs under which they occur. Pressure patterns, wind speeds and cyclone tracks are investigated for storms assigned to different CWTs. Investigations are based on ERA40 reanalysis data. It is shown that about 80% of the storm days in Central Europe are connected with westerly flow and that Central European storm events primarily occur during a moderately positive NAO phase, while strongly positive NAO phases (6.4% of all days) account for more than 20% of the storms. A storm occurs over Central Europe during about 10% of the days with a strong positive NAO index. The most frequent pathway of cyclone systems associated with storms over Central Europe leads from the North Atlantic over the British Isles, North Sea and southern Scandinavia into the Baltic Sea. The mean intensity of the systems typically reaches its maximum near the British Isles. Differences between the characteristics for storms identified from the CWT identification procedure (gale days, based on MSLP fields) and those from extreme winds at Central European grid points are small, even though only 70% of the storm days agree. While most storms occur during westerly flow situations, specific characteristics of storms during the other CWTs are also considered. Copyright © 2009 Royal Meteorological Society
Resumo:
We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, Astro- Grid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of n–point correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.
Resumo:
In any wide-area distributed system there is a need to communicate and interact with a range of networked devices and services ranging from computer-based ones (CPU, memory and disk), to network components (hubs, routers, gateways) and specialised data sources (embedded devices, sensors, data-feeds). In order for the ensemble of underlying technologies to provide an environment suitable for virtual organisations to flourish, the resources that comprise the fabric of the Grid must be monitored in a seamless manner that abstracts away from the underlying complexity. Furthermore, as various competing Grid middleware offerings are released and evolve, an independent overarching monitoring service should act as a corner stone that ties these systems together. GridRM is a standards-based approach that is independent of any given middleware and that can utilise legacy and emerging resource-monitoring technologies. The main objective of the project is to produce a standardised and extensible architecture that provides seamless mechanisms to interact with native monitoring agents across heterogeneous resources.
Resumo:
Monitoring resources is an important aspect of the overall efficient usage and control of any distributed system. In this paper, we describe a generic open-source resource monitoring architecture that has been specifically designed for the Grid. The paper consists of three main sections. In the first section, we outline our motivation and briefly detail similar work in the area. In the second section, we describe the general monitoring architecture and its components. In the final section of the paper, we summarise the experiences so far and outline our future work.
Resumo:
There is an increasing interest in integrating Java-based, and in particular Jini systems, with the emerging Grid infrastructures. In this paper we explore various ways of integrating the key components of each architecture, their directory and information management services. In the first part of the paper we sketch out the Jini and Grid architectures and their services. We then review the components and services that Jini provides and compare these with those of the Grid. In the second part of the paper we critically explore four ways that Jini and the Grid could interact, here in particular we look at possible scenarios that can provide a seamless interface to a Jini environment for Grid clients and how to use Jini services from a Grid environment. In the final part of the paper we summarise our findings and report on future work being undertaken to integrate Jini and the Grid.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.