881 resultados para Grain de pollen
Resumo:
We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.
Resumo:
Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis is investigated using 13-years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznań. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznań and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the nearness of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznań on the 4th and 5th September 1999 and the 3rd September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.
Resumo:
Pollen data have been recorded at Novi Sad in Serbia since 2000. The adopted method of producing pollen counts has been the use of five longitudinal transects that examine 19.64% of total sample surface. However, counting five transects is time consuming and so the main objective of this study is to investigate whether reducing the number to three or even two transects would have a significant effect on daily average and bi-hourly pollen concentrations, as well as the main characteristics of the pollen season and long-term trends. This study has shown that there is a loss of accuracy in daily average and bi-hourly pollen concentrations (an increase in % ERROR) as the sub-sampling area is reduced from five to three or two longitudinal transects. However, this loss of accuracy does not impact on the main characteristics of the season or long-term trends. As a result, this study can be used to justify changing the sub-sampling method used at Novi Sad from five to three longitudinal transects. The use of two longitudinal transects has been ruled out because, although quicker, the counts produced: (a) had the greatest amount of % ERROR, (b) altered the amount of influence of the independent variable on the dependent variable (the slope in regression analysis) and (c) the total sampled surface (7.86%) was less than the minimum requirement recommended by the European Aerobiology Society working group on Quality Control (at least 10% of total slide area).
Resumo:
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.
Resumo:
Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C"ordoba, Spain, and "Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C"ordoba (3.9 pg Ole e 1/pollen) than in "Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C"ordoba were 2.4 times higher than in "Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in "Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical.
Resumo:
The pollen grains of ragweed are important aeroallergens that have the potential to be transported longdistances through the air. The arrival of ragweed pollen in Nordic countries from the Pannonian Plain canoccur when certain conditions are met, which this study aims to describe for the first time. Atmosphericragweed pollen concentrations were collected at 16 pollen-monitoring sites. Other factors included inthe analysis were the overall synoptic weather situation, surface wind speeds, wind direction and tem-peratures as well as examining regional scale orography and satellite observations. Hot and dry weatherin source areas on the Pannonian Plain aid the release of ragweed pollen during the flowering seasonand result in the deep Planetary Boundary Layers needed to lift the pollen over the Carpathian Moun-tains to the north. Suitable synoptic conditions are also required for the pollen bearing air masses tomove northward. These same conditions produce the jet-effect Kosava and orographic foehn winds thataid the release and dispersal of ragweed pollen and contribute towards its movement into Poland andbeyond.
Resumo:
This chapter reviews what is known about abundance and distribution of the 12 most important aeroallergenic pollens in Europe: Ambrosia, Alnus, Artemisia, Betula, Chenopodiaceae, Corylus, Cupressaceae/Taxaceae, Olea, Platanus, Poaceae, Quercus and Urtica/Parietaria. Abundance is based on 10 years of pollen records from 521 stations of the European Aeroallergen Network that were interpolated into 12 distribution maps covering most of Europe. The chapter compares the distribution maps with other types of distribution maps that are available for selected tree species and discuss two methods for making harmonized pollen source inventories: “bottom-up” and “top-down”. Both methods have advantages and disadvantages, and both need to be explored and further developed. Remote sensing has shown to be a valuable method to improve the inventories, especially the use of satellites. The full potential as well as limitations of remote sensing in relation to pollen sources remains to be explored. The review suggests that the most probable way of obtaining inventories of all 12 pollen species is to use top-down methods that use an ecosystem-based approach that for each particular species connects ecological preference, pollen counts and remote sensing.
Resumo:
France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.
Resumo:
Background Very few studies on human exposure to allergenic pollen have been conducted using direct methods, with background concentrations measured at city center monitoring stations typically taken as a proxy for exposure despite the inhomogeneous nature of atmospheric pollen concentrations. A 2003 World Health Organization report highlighted the need for an improved understanding of the relation between monitoring station data and actual exposure. Objective To investigate the relation between grass pollen dose and background concentrations measured at a monitoring station, to assess the fidelity of monitoring station data as a qualitative proxy for dose, and to evaluate the ratio of dose rate to background concentration. Methods Grass pollen dose data were collected in Aarhus, Denmark, in an area where grass pollen sources were prevalent, using Nasal Air Samplers. Sample collection lasted for approximately 25 to 30 minutes and was performed at 2-hour intervals from noon to midevening under moderate exercise by 2 individuals. Results A median ratio of dose rate to background concentration of 0.018 was recorded, with higher ratio values frequently occurring at 12 to 2 pm, the time of day when grass species likely to be present in the area are expected to flower. From 4 to 8 pm, dose rate and background concentration data were found to be strongly and significantly correlated (rs = 0.81). Averaged dose rate and background concentration data showed opposing temporal trends. Conclusion Where local emissions are not a factor, background concentration data constitute a good quantitative proxy for inhaled dose. The present ratio of dose rate to background concentration may aid the study of dose–response relations.
Resumo:
Introduction: In aerobiological studies it is often necessary to compare concentration data recorded with different models of sampling instrument. Sampler efficiency typically varies from device to device, and depends on the target aerosol and local atmospheric conditions. To account for these differences inter-sampler correction factors may be applied, however for many pollen samplers and pollen taxa such correction factors do not exist and cannot be derived from existing published work. Materials and methods: In this study the relative efficiencies of the Burkard 7-Day Recording Volumetric Spore Trap, the Sampling Technologies Rotorod Model 20 and the Burkard Personal Volumetric Air Sampler were evaluated for Urticaceae and Poaceae pollen under field conditions, and the influence of wind speed and relative humidity on these efficiency relationships was assessed. Data for the two pollen taxa were collected during 2010 and 2011-12 respectively. Results: The three devices were found to record significantly different concentrations for both pollen taxa, with the exception of the 7-Day and Rotorod samplers for Poaceae pollen. Under the range of conditions present during the study wind speed was found to only have a significant impact on inter-sampler relationships involving the vertically orientated Burkard Personal sampler, whilst no interaction between relative efficiency and relative humidity was observed. Conclusions: Data collected with the three models of sampler should only be compared once the appropriate correction has been made, with wind speed taken into account where appropriate.
Resumo:
In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods of the pollen season. Pollen concentrations are also influenced by meteorological factors – directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season in Aarhus – a twin peak profile during the early season, a single evening profile during the middle of the season, and a single midday peak during the late season. Whilst this variation could not be explained by meteorological factors, no inconsistencies were found with the theory that it was driven by a succession of different grass species with different diurnal flowering patterns dominating atmospheric pollen loads as the season progressed. The potential for exposure was found to be significantly greater during the late-season period than during either the early- or mid-season periods.
Resumo:
This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009–2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.
Resumo:
The main aim of this study was to analyse the temporal and spatial variations in grass (Poaceae) pollen counts (2005–2011) recorded in Évora (Portugal), Badajoz (Spain) and Worcester (UK). Weekly average data were examined using nonparametric statistics to compare differences between places. On average, Évora recorded the earliest start dates of the Poaceae pollen seasons and Worcester the latest. The intensity of the Poaceae pollen season varied between sites, with Worcester usually recording the least and Évora the most grass pollen in a season. Mean durations of grass pollen seasons were 77 days in Évora, 78 days in Badajoz and 59 days in Worcester. Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Weekly pollen data, from March to September, from the three pollen-monitoring stations studied were compared. The best fit and most statistically significant correlations were obtained by moving Worcester data backward by 4 weeks (Évora, r = 0.810, p < 0.001) and 5 weeks (Badajoz,r = 0.849, p < 0.001). Weekly data from Worcester therefore followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1,500 km and 4–5 weeks later. The sum of pollen recorded in a season was compared with monthly rainfall between January and May. The strongest positive relationship between season intensity and rainfall was between the annual sum of Poaceae pollen recorded in the season at Badajoz and Évora and total rainfall during January and February. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester.
Resumo:
Pollen grains from the genus ragweed (Ambrosia spp.) are important aeroallergens. In Europe, the largest sources of atmospheric ragweed pollen are the Rhône Valley (France), parts of Northern Italy, the Pannonian Plain and Ukraine. Episodes of Long Distance Transport (LDT) of ragweed pollen from these centres can cover large parts of Europe and are predominantly studied using receptor based models (Smith et al., (2013) and references therein). The clinical impact of allergenic ragweed pollen arriving from distant sources remains unclear (Cecchi et al. 2010). Although a recent study has found the major allergens of ragweed in air samples collected in Poznań, Poland, during episodes of long-distance transport from the Pannonian Plain (Grewling et al. 2013). The source orientated models SILAM, DEHM, COSMO-Art, METRAS and ENVIRO-HIRLAM currently report having the capability of modelling atmospheric concentrations of pollen in Europe. The performance of such source-orientated models is strongly dependent on the quality of the emissions data, which is a focus of current research (e.g. Thibaudon et al. (2014)). The output from these models are important for warning allergy sufferers in areas polluted by ragweed, but could also be used to warn the public of ragweed pollen being transported into areas where the plant is not abundant. Areas outside of the main areas of ragweed infection that contain considerable local populations must, however, also include local scale models. These models can be used to predict local concentrations, even when LDT is not present. This concept of combined LDT and local scale calculations has been shown to be work for air pollutants and is considered usable for urban scale calculations of aeroallergens once urban scale maps of aeroallergen sources have been produced.