936 resultados para Grain -- Genetic engineering
Resumo:
MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.
Resumo:
With the increase in population, housing and construction of various facilities have been a problem with urbanization. Having exhausted all the trouble free hand, man is nowon the lookout for techniques to improve areas which were originally considered uninhabitable. Thus this study is based on the nature and engineering behavior of soft clays covering long stretches of coastal line and methods to improve their geotechnical properties .The main aim of the present investigation is to study in detail the physical and engineering behavior of the marine clays of Cochin. While it is well known that the marine clays have been posing numerous problems to foundation engineers all along, the relevant literature reveals that no systematic and comprehensive study has been attempted to date. The: knowledge gained through the study is suitably used to improve these properties with appropriate additives.
Resumo:
This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion
Resumo:
Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.
Resumo:
Genetic Programming can be effectively used to create emergent behavior for a group of autonomous agents. In the process we call Offline Emergence Engineering, the behavior is at first bred in a Genetic Programming environment and then deployed to the agents in the real environment. In this article we shortly describe our approach, introduce an extended behavioral rule syntax, and discuss the impact of the expressiveness of the behavioral description to the generation success, using two scenarios in comparison: the election problem and the distributed critical section problem. We evaluate the results, formulating criteria for the applicability of our approach.
Resumo:
In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.
Resumo:
The authors propose a bit serial pipeline used to perform the genetic operators in a hardware genetic algorithm. The bit-serial nature of the dataflow allows the operators to be pipelined, resulting in an architecture which is area efficient, easily scaled and is independent of the lengths of the chromosomes. An FPGA implementation of the device achieves a throughput of >25 million genes per second
Resumo:
The authors present a systolic design for a simple GA mechanism which provides high throughput and unidirectional pipelining by exploiting the inherent parallelism in the genetic operators. The design computes in O(N+G) time steps using O(N2) cells where N is the population size and G is the chromosome length. The area of the device is independent of the chromosome length and so can be easily scaled by replicating the arrays or by employing fine-grain migration. The array is generic in the sense that it does not rely on the fitness function and can be used as an accelerator for any GA application using uniform crossover between pairs of chromosomes. The design can also be used in hybrid systems as an add-on to complement existing designs and methods for fitness function acceleration and island-style population management
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
We have designed a highly parallel design for a simple genetic algorithm using a pipeline of systolic arrays. The systolic design provides high throughput and unidirectional pipelining by exploiting the implicit parallelism in the genetic operators. The design is significant because, unlike other hardware genetic algorithms, it is independent of both the fitness function and the particular chromosome length used in a problem. We have designed and simulated a version of the mutation array using Xilinix FPGA tools to investigate the feasibility of hardware implementation. A simple 5-chromosome mutation array occupies 195 CLBs and is capable of performing more than one million mutations per second. I. Introduction Genetic algorithms (GAs) are established search and optimization techniques which have been applied to a range of engineering and applied problems with considerable success [1]. They operate by maintaining a population of trial solutions encoded, using a suitable encoding scheme.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
Acrylamide forms from free asparagine and sugars during cooking, and products derived from the grain of cereals, including rye, contribute a large proportion of total dietary intake. In this study, free amino acid and sugar concentrations were measured in the grain of a range of rye varieties grown at locations in Hungary, France, Poland, and the United Kingdom and harvested in 2005, 2006, and 2007. Genetic and environmental (location and harvest year) effects on the levels of acrylamide precursors were assessed. The data showed free asparagine concentration to be the main determinant of acrylamide formation in heated rye flour, as it is in wheat. However, in contrast to wheat, sugar, particularly sucrose, concentration also correlated both with asparagine concentration and with acrylamide formed. Free asparagine concentration was shown to be under genetic (G), environmental (E), and integrated (G × E) control. The same was true for glucose, whereas maltose and fructose were affected mainly by environmental factors and sucrose was largely under genetic control. The ratio of variation due to varieties (genotype) to the total variation (a measure of heritability) for free asparagine concentration in the grain was 23%. Free asparagine concentration was closely associated with bran yield, whereas sugar concentration was associated with low Hagberg falling number. Rye grain was found to contain much higher concentrations of free proline than wheat grain, and less acrylamide formed per unit of asparagine in rye than in wheat flour.
Resumo:
A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.
Resumo:
Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur.