779 resultados para Ginzburg-Landau


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dem Beitrag wird der Frage nachgegangen, welchen Einfluss die Inanspruchnahme frühkindlicher Bildungs- und Betreuungsangebote auf den späteren Schulbesuch von Kindern hat und wie sich dies längerfristig auf die zu erwartenden Lebenseinkommen und damit einhergehend den langfristigen volkswirtschaftlichen Nutzen auswirkt. Untersucht werden Kinder in Deutschland der Jahrgänge 1990 bis 1995. Die Datengrundlage liefert das Sozio-oekonomische Panel (SOEP). Der Schwerpunkt der Analysen liegt auf der Bestimmung des Effekts des Krippenbesuchs auf die spätere Einstufung in die verschiedenen Schultypen in Abhängigkeit der sozialen Herkunft und des Migrationshintergrunds der Kinder. Ausgehend von diesen Schätzungen werden dann die zu erwartenden, über den Bildungsabschluss vermittelten Auswirkungen des Krippenbesuchs auf das spätere Lebenseinkommen bestimmt, um einen Eindruck der langfristigen volkswirtschaftlichen Folgen vorschulischer Kinderbetreuung zu erhalten. Der Beitrag zeigt, dass der Krippenbesuch die Wahrscheinlichkeit einer Einstufung ins Gymnasium nach Kontrolle relevanter Drittvariablen im Schnitt um rund 14 Prozentpunkte erhöht. Dieser Einfluss entspricht einem erwarteten Lebenseinkommenszuwachs von rund 27000 Euro. Wird dieser Ertrag auf den Zeitpunkt des Krippenbesuchs abdiskontiert und den Kosten eines durchschnittlichen Krippenbesuchs in der Höhe von rund 8000 Euro gegenübergestellt, so ergibt sich ein Kosten-Nutzen-Verhältnis von 1 zu 2.7. (DIPF/Orig.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schrödinger equation, has been analyzed; wave 1 is linearly unstable with growth rate , and waves 2 and 3 are stable with damping 2 and 3, respectively. The dependence of gross dynamical features on the damping model as characterized by the relation between damping and wave-vector ratios, 2 /3, k2 /k3, and the polarization of the waves, is discussed; two damping models, Landau k and resistive k2, are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist as against flow contraction just requiring.In the case of right-hand RH polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if 2+3/2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.