987 resultados para General Algorithm
Resumo:
State Agency Audit Report
Resumo:
Other Audit Reports - State Leasing
Resumo:
State Agency Audit Report
Resumo:
OBJECTIVE: To identify which physician and patient characteristics are associated with physicians' estimation of their patient social status.DESIGN: Cross-sectional ulticentric survey. SETTING: Fourty-seven primary care private offices in Western Switzerland. PARTICIPANTS: Random sample of 2030 patients ≥ 16, who encountered a general practitioner (GP) between September 2010 and February 2011. MAIN MEASURES: PRIMARY OUTCOME: patient social status perceived by GPs, using the MacArthur Scale of Subjective Social Status, ranging from the bottom (0) to the top (10) of the social scale.Secondary outcome: Difference between GP's evaluation and patient's own evaluation of their social status. Potential patient correlates: material and social deprivation using the DiPCare-Q, health status using the EQ-5D, sources of income, and level of education. GP characteristics: opinion regarding patients' deprivation and its influence on health and care. RESULTS: To evaluate patient social status, GPs considered the material, social, and health aspects of deprivation, along with education level, and amount and type of income. GPs declaring a frequent reflexive consideration of their own prejudice towards deprived patients, gave a higher estimation of patients' social status (+1.0, p = 0.002). Choosing a less costly treatment for deprived patients was associated with a lower estimation (-0.7, p = 0.002). GP's evaluation of patient social status was 0.5 point higher than the patient's own estimate (p<0.0001). CONCLUSIONS: GPs can perceive the various dimensions of patient social status, although heterogeneously, according partly to their own characteristics. Compared to patients' own evaluation, GPs overestimate patient social status.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic–stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to ∼2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3′-UTRs. While we estimate a significant false discovery rate of ∼50%–70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
Descriptors based on Molecular Interaction Fields (MIF) are highly suitable for drug discovery, but their size (thousands of variables) often limits their application in practice. Here we describe a simple and fast computational method that extracts from a MIF a handful of highly informative points (hot spots) which summarize the most relevant information. The method was specifically developed for drug discovery, is fast, and does not require human supervision, being suitable for its application on very large series of compounds. The quality of the results has been tested by running the method on the ligand structure of a large number of ligand-receptor complexes and then comparing the position of the selected hot spots with actual atoms of the receptor. As an additional test, the hot spots obtained with the novel method were used to obtain GRIND-like molecular descriptors which were compared with the original GRIND. In both cases the results show that the novel method is highly suitable for describing ligand-receptor interactions and compares favorably with other state-of-the-art methods.
Resumo:
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells isone of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenoncontributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora ofdifferent transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify thedifferent types of reflected splicing variation. In this work, we present a general definition of the AS event along with anotation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assignsa specific ‘‘AS code’’ to every possible pattern of splicing variation. On the basis of this definition and the correspondingcodes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of ASevents in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversityacross genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—ofthe observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate andto compare the AS landscape of different reference annotation sets in human and in other metazoan species and found thatproportions of AS events change substantially depending on the annotation protocol, species-specific attributes, andcoding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conductspecific studies investigating the occurrence, impact, and regulation of AS.
Resumo:
Background: We address the problem of studying recombinational variations in (human) populations. In this paper, our focus is on one computational aspect of the general task: Given two networks G1 and G2, with both mutation and recombination events, defined on overlapping sets of extant units the objective is to compute a consensus network G3 with minimum number of additional recombinations. We describe a polynomial time algorithm with a guarantee that the number of computed new recombination events is within ϵ = sz(G1, G2) (function sz is a well-behaved function of the sizes and topologies of G1 and G2) of the optimal number of recombinations. To date, this is the best known result for a network consensus problem.Results: Although the network consensus problem can be applied to a variety of domains, here we focus on structure of human populations. With our preliminary analysis on a segment of the human Chromosome X data we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. These results have been verified independently using traditional manual procedures. To the best of our knowledge, this is the first recombinations-based characterization of human populations. Conclusion: We show that our mathematical model identifies recombination spots in the individual haplotypes; the aggregate of these spots over a set of haplotypes defines a recombinational landscape that has enough signal to detect continental as well as population divide based on a short segment of Chromosome X. In particular, we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. The agreement with mutation-based analysis can be viewed as an indirect validation of our results and the model. Since the model in principle gives us more information embedded in the networks, in our future work, we plan to investigate more non-traditional questions via these structures computed by our methodology.
Resumo:
La nostra comunicació s'emmarca en la Catalunya deIs inicis del regnat de Felip II (III de Castella). Té per objecte la complexa situació que es produeix quan, amb motiu d'una convocatoria de Corts, la Diputació del General es troba frec a frec amb els tres braços als quals està legalment subordinada. La convivència forçada d'ambdues institucions en el mateix quadre polític, ni que sigui durant lapses de temps relativament curts, esdevé cada cop més problematica a mesura que avança el segle XVI.
Resumo:
State Audit Reports
Resumo:
General practitioners treat patients with psychiatric disorders, for whom they have to evaluate the indication of a psychotropic medication. In addition to the patient's symptoms, the clinician has to take into account transferential and countertransferential elements linked to the prescription. Sociological factors also influence both the patient and the clinician, partly due to the western society's value of performance. Consistent with the bio-psycho-social model of disease, we recommend that the evaluation of the indication of a psychotropic medication includes the patient's symptoms, but also the psychological and sociological factors.