863 resultados para Gaussian kernel
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.
Resumo:
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.
Resumo:
We consider the problem of assigning an input vector bfx to one of m classes by predicting P(c|bfx) for c = 1, ldots, m. For a two-class problem, the probability of class 1 given bfx is estimated by s(y(bfx)), where s(y) = 1/(1 + e-y). A Gaussian process prior is placed on y(bfx), and is combined with the training data to obtain predictions for new bfx points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior; the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multi-class problems (m >2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.
Resumo:
This technical report builds on previous reports to derive the likelihood and its derivatives for a Gaussian Process with a modified Bessel function based covariance function. The full derivation is shown. The likelihood (with gradient information) can be used in maximum likelihood procedures (i.e. gradient based optimisation) and in Hybrid Monte Carlo sampling (i.e. within a Bayesian framework).
Resumo:
This report outlines the derivation and application of a non-zero mean, polynomial-exponential covariance function based Gaussian process which forms the prior wind field model used in 'autonomous' disambiguation. It is principally used since the non-zero mean permits the computation of realistic local wind vector prior probabilities which are required when applying the scaled-likelihood trick, as the marginals of the full wind field prior. As the full prior is multi-variate normal, these marginals are very simple to compute.
Resumo:
Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.
Resumo:
We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.
Resumo:
The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite-size effects are estimated for comparing the results with the bounds set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low.
Resumo:
We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.
Resumo:
Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.
Resumo:
We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.
Resumo:
In this chapter, we elaborate on the well-known relationship between Gaussian processes (GP) and Support Vector Machines (SVM). Secondly, we present approximate solutions for two computational problems arising in GP and SVM. The first one is the calculation of the posterior mean for GP classifiers using a `naive' mean field approach. The second one is a leave-one-out estimator for the generalization error of SVM based on a linear response method. Simulation results on a benchmark dataset show similar performances for the GP mean field algorithm and the SVM algorithm. The approximate leave-one-out estimator is found to be in very good agreement with the exact leave-one-out error.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.