967 resultados para Gas-phase Acidities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a lattice-gas model of particles with internal orientational degrees of freedom. In addition to antiferromagnetic nearest-neighbor (NN) and next-nearest-neighbor (NNN) positional interactions we also consider NN and NNN interactions arising from the internal state of the particles. The system then shows positional and orientational ordering modes with associated phase transitions at Tp and To temperatures at which long-range positional and orientational ordering are, respectively, lost. We use mean-field techniques to obtain a general approach to the study of these systems. By considering particular forms of the orientational interaction function we study coupling effects between both phase transitions arising from the interplay between orientational and positional degrees of freedom. In mean-field approximation coupling effects appear only for the phase transition taking place at lower temperatures. The strength of the coupling depends on the value of the long-range order parameter that remains finite at that temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed a two-dimensional lattice-gas model of cylindrical molecules which can exhibit four possible orientations. The Hamiltonian of the model contains positional and orientational energy interaction terms. The ground state of the model has been investigated on the basis of Karl¿s theorem. Monte Carlo simulation results have confirmed the predicted ground state. The model is able to reproduce, with appropriate values of the Hamiltonian parameters, both, a smectic-nematic-like transition and a nematic-isotropic-like transition. We have also analyzed the phase diagram of the system by mean-field techniques and Monte Carlo simulations. Mean-field calculations agree well qualitatively with Monte Carlo results but overestimate transition temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point C1 and a liquid-liquid critical point C2. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and gives us insight on the mechanisms ruling the dependence of the two critical points on the potential¿s parameters. The soft-core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: As no curative treatment for advanced pancreatic and biliary cancer with malignant ascites exists, new modalities possibly improving the response to available chemotherapies must be explored. This phase I study assesses the feasibility, tolerability and pharmacokinetics of a regional treatment of gemcitabine administered in escalating doses by the stop-flow approach to patients with advanced abdominal malignancies (adenocarcinoma of the pancreas, n = 8, and cholangiocarcinoma of the liver, n = 1). EXPERIMENTAL DESIGN: Gemcitabine at 500, 750 and 1,125 mg/m(2) was administered to three patients at each dose level by loco-regional chemotherapy, using hypoxic abdominal stop-flow perfusion. This was achieved by an aorto-caval occlusion by balloon catheters connected to an extracorporeal circuit. Gemcitabine and its main metabolite 2',2'-difluorodeoxyuridine (dFdU) concentrations were measured by high performance liquid chromatography with UV detection in the extracorporeal circuit during the 20 min of stop-flow perfusion, and in peripheral plasma for 420 min. Blood gases were monitored during the stop-flow perfusion and hypoxia was considered stringent if two of the following endpoints were met: pH </= 7.2, pO(2) nadir ratio </=0.70 or pCO(2) peak ratio >/=1.35. The tolerability of this procedure was also assessed. RESULTS: Stringent hypoxia was achieved in four patients. Very high levels of gemcitabine were rapidly reached in the extracorporeal circuit during the 20 min of stop-flow perfusion, with C (max) levels in the abdominal circuit of 246 (+/-37%), 2,039 (+/-77%) and 4,780 (+/-7.3%) mug/ml for the three dose levels 500, 750 and 1,125 mg/m(2), respectively. These C (max) were between 13 (+/-51%) and 290 (+/-12%) times higher than those measured in the peripheral plasma. Similarly, the abdominal exposure to gemcitabine, calculated as AUC(t0-20), was between 5.5 (+/-43%) and 200 (+/-66%)-fold higher than the systemic exposure. Loco-regional exposure to gemcitabine was statistically higher in presence of stringent hypoxia (P < 0.01 for C (max) and AUC(t0-20), both normalised to the gemcitabine dose). Toxicities were acceptable considering the complexity of the procedure and were mostly hepatic; it was not possible to differentiate the respective contributions of systemic and regional exposures. A significant correlation (P < 0.05) was found between systemic C (max) of gemcitabine and the nadir of both leucocytes and neutrophils. CONCLUSIONS: Regional exposure to gemcitabine-the current standard drug for advanced adenocarcinoma of the pancreas-can be markedly enhanced using an optimised hypoxic stop-flow perfusion technique, with acceptable toxicities up to a dose of 1,125 mg/m(2). However, the activity of gemcitabine under hypoxic conditions is not as firmly established as that of other drugs such as mitomycin C, melphalan or tirapazamine. Further studies of this investigational modality, but with bioreductive drugs, are therefore warranted first to evaluate the tolerance in a phase I study and later on to assess whether it does improve the response to chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotine in a smoky indoor air environment can be determined using graphitized carbon black as a solid sorbent in quartz tubes. The temperature stability, high purity, and heat absorption characteristics of the sorbent, as well as the permeability of the quartz tubes to microwaves, enable the thermal desorption by means of microwaves after active sampling. Permeation and dynamic dilution procedures for the generation of nicotine in the vapor phase at low and high concentrations are used to evaluate the performances of the sampler. Tube preparation is described and the microwave desorption temperature is measured. Breakthrough volume is determined to allow sampling at 0.1-1 L/min for definite periods of time. The procedure is tested for the determination of gas and paticulate phase nicotine in sidestream smoke produced in an experimental chamber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.