905 resultados para GAS-TRANSPORT PROPERTIES
Resumo:
We present new simulation results for the packing of single-center and three-center models of carbon dioxide at high pressure in carbon slit pores. The former shows a series of packing transitions that are well described by our density functional theory model developed earlier. In contrast, these transitions are absent for the three-center model. Analysis of the simulation results shows that alternations of flat-lying molecules and rotated molecules can occur as the pore width is increased. The presence or absence of quadrupoles has negligible effect on these high-density structures.
Resumo:
We calculate tangential momentum coefficients for the exchange of momentum between molecules in transport and the internal surface of a membrane pore, modelled as a simple atomic structure. We introduce a local specular reflection (LSR) hypothesis, which states that impinging molecules undergo mirror-like reflection in a plane tangent to a surface atom at the point of impact. As a consequence, the components of the velocity, parallel to the direction of flow will (in general) change on impact. The overall effect is a loss of tangential momentum, since more is lost in the upstream direction than is gained in the downstream direction. The loss of tangential momentum is greater when the size ratio of fluid to solid atom is small, allowing more steeply inclined impact planes to become accessible to the fluid phase molecules. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.
Resumo:
Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.
Resumo:
Common problems encountered in clinical sensing are those of non-biocompatibility, and slow response time of the device. The latter, also applying to chemical sensors, is possibly due to a lack of understanding of polymer support or membrane properties and hence failure to optimise membranes chosen for specific sensor applications. Hydrogels can be described as polymers which swell in water. In addition to this, the presence of water in the polymer matrix offers some control of biocompatibility. They thus provide a medium through which rapid transport of a sensed species to an incorporated reagent could occur. This work considers the feasibility of such a system, leading to the design and construction of an optical sensor test bed. The development of suitable membrane systems and of suitable coating techniques in order to apply them to the fibre optics is described. Initial results obtained from hydrogel coatings implied that the refractive index change in the polymer matrix, due to a change in water content with pH is the major factor contributing to the sensor response. However the presence of the colourimetric reagent was also altering the output signal obtained. An analysis of factors contributing to the overall response, such as colour change and membrane composition were made on both the test bed, via optical response, and on whole membranes via measurement of water content change. The investigation of coatings with low equilibrium water contents, of less than 10% was carried out and in fact a clearer signal response from the test bed was noted. Again these membranes were suprisingly responding via refractive index change, with the reagent playing a primary role in obtaining a sensible or non-random response, although not in a colourimetric fashion. A photographic study of these coatings revealed some clues as to the physical nature of these coatings and hence partially explained this phenomenon. A study of the transport properties of the most successful membrane, on a coated wire electrode and also on the fibre optic test bed, in a series of test environments, indicated that the reagent was possibly acting as an ion exchanger and hence having a major influence on transport and therefore sensor characteristics.
Resumo:
Hydrogels are a unique class of polymer which swell, but do not dissolve in, water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both cyclic and linear polyethers have been synthesised and are described in this thesis. Initially, cyclic polyethers were occluded within the polymer matrix and the transport properties investigated. The results indicated that the presence of an ionophore can be used to modulate ion transport and that ion transport is described by a dual-sorption mechanism. However, these studies were limited due to ionophore loss during hydration. Hence, the synthesis of a range of acrylate based crown ether monomers was considered. A pure sample of 4-acryolylaminobenzo-15-crown-5 was obtained and a terpolymer containing this monomer was prepared. Transport studies illustrated that the presence of a `bound' ionophore modulates ion transport in a similar way to the occluded systems. The transport properties of a series of terpolymers containing linear polyethers were then investigated. The results indicated that the dual-sorption mechanism is observed for these systems with group II metal cations while the transport of group I metal cations, with the exception of sodium, is enhanced. Finally, the equilibrium water contents (EWC) surface and mechanical properties of these terpolymers containing linear polyethers were examined. Although subtle variations in EWC are observed as the structure of the polyether side chain varies, generally EWC is enhanced due to the hydrophilicity of the polyether side chain. The macroscopic surface properties were investigated using a sessile drop technique and FTIR spectroscopy. At a molecular level surface properties were probed using an in vitro ocular spoilation model and preliminary cell adhesion studies. The results indicate that the polyethylene oxide side chains are expressed at the polymer surface thus reducing the adhesion of biological species.
Resumo:
The effects of ionisation on transdermal drug delivery using excised human epidermis (HS) and silastic rubber (SR) as model permeation barriers were investigated in vitro using Franz-type absorption cells. Suspensions and solutions of salicylic acid (SA), the model ionogenic permeant, were used as donors and the variables studied were vehicle pH and trans-membrane pH-gradients. For solutions, the pH effect was related to the level of ionisation of the drug and the degree of saturation of the solution. With suspensions, the observed permeation rate was unaffected by pH. The penetration profiles through HS and SR were similar, although the overall flux through HS was about 70% of that observed through SR. Pretreatment of the membranes with various enhancer regimens, including oleic acid, Azone and N, N-dimethylamides in propylene glycol (PG) and isopropyl myristate (IPM) promoted the penetration of SA. SR was not a suitable model for enhancer pretreatment using IPM as a vehicle as the membrane was significantly disrupted by this vehicle. The results from comparable experiments with and without a trans-membrane pH-gradient did not have a significant effect upon flux or flux enhancement after pretreatment with the above enhancers. A theoretical model for the extraction coefficients of weak acids was derived using the partition coefficients of the ionised and unionised species, pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. The distribution of this solute between aqueous and oily phases, with and without added enhancer, was measured as a function of pH. The extraction coefficients determined were consistent with the model and showed that the behaviour of the system can be explained without referral to ion-pair mechanisms. Phosphonoacetate is an effective antiviral agent. However, as it is charged at physiological pH, its permeation across cell membranes is limited. To assess the improvement of the transport properties of this molecule, mono-, di- and tri-ester prodrugs were examined. These were assessed for stability and subsequent breakdown with respect to pH by HPLC. In vitro percutaneous absorption was observed using the triester, but not the ionic mono- or di-esters. The triester absorption could be potentiated using a range of enhancers with oleic acid being the most effective. Cyclodextrins (CD) have a role as absorption enhancers for peptide compounds across nasal epithelium. One potential mode of action is that CDs include these compounds, protect them from enzymic attack and thereby increase their residence time in the nasal epithelium. This study investigated the potential of CDs to protect ester prodrugs from enzymatic breakdown and prevent production of poorly transportable ionic species. Using a range of CD to ester molar ratios (10:1 to 2500:1) a small, but measurable, protection for the model esters (parabens) against esterase attack was observed. Possible mechanisms for this phenomenon are that CDs include the ester, making it unavailable for hydrolysis, the CDs may also affect the esterase in some way preventing access for the ester into the active site.
Resumo:
Phosphonoformate and phosphonoacetate are effective antiviral agents, however they are charged at physiological pH and as such penetration into cells and diffusion across the blood-brain bamer is limited. In an attempt to increase the lipophilicity and improve the transport properties of these molecules, prodrugs were synthesised and their stabilities and reconversion to the parent compound subsequently investigated by the techniques of 31P nuclear magnetic resonance spectroscopy and high performance liquid Chromatography. A series of 4-substituted dibenzyl (methoxycarbonyl)phosphonates were prepared and found to be hydrolytically unstable giving predominantly the diesters, benzyl (methoxycarbonyl)phosphonates. This instability arose from the electron-withdrawing effect of the carbonyl group promoting nucleophilic attack at phosphorus. It was possible to influence the mechanism and, to some extent, the rate of hydrolysis of the phosphonoformate triesters to the diesters by varying the electronic nature of the substituent in the 4-position of the aromatic ring. Strongly electron-withdrawing groups increased the sensitivity of phosphorus to nucleophilic attack, thus promoting P-O .bond cleavage and rapid hydrolysis. Conversely, weakly electron-withdrawing substituents encouraged C-O bond fission, presumably through resonance stabilisation of the benzyl carbonium ion. The loss of the protecting group on phosphorus was in competition with nucleophilic attack at the carbonyl group, resulting in P-C bond cleavage with dibenzyl phosphite formation. The high instability and P-C bond fission make triesters unsuitable prodrug forms of phosphonoformate. A range of chemically stable triesters of phosphonoacetate were synthesised and their bioactivation investigated. Di(benzoyloxymethyl) (methoxycarbonylmethyl)phosphonates degraded to the relevant benzoyloxymethyl (methoxycarbonylmethyl)phosphonate in the presence of esterase. The enzymatic activation was restricted to the removal of only one protecting group from phosphorus, most likely due to the close proximity of the benzoyloxy ester function to the anionic charge on the diester. However, in similar systems di(4-alkanoyloxybenzyl) (methoxycarbonylmethyl)phosphonates degraded in the presence of esterase with the loss of both protecting groups on phosphorus to give the monoester, (methoxycarbonylmethyl)phosphonate, via the intermediary of the unstable 4-hydroxy benzyl esters. The methoxycarbonyl function remained intact. The rate of enzymatic hydrolysis and subsequent removal of the protecting groups on phosphorus was dependent on the nature of the alkanoyl group and was most rapid for the 4-nbutanoyloxybenzyl and 4-iso-butanoyloxybenzyl esters of phosphonoacetate. This provides a strategy for the design of a prodrug with sufficient stability in plasma to reach the central nervous system in high concentration, wherein rapid metabolism to the active drug by brain-associated enzymes occurs.
Resumo:
AIDS dementia complex is a common neurological syndrome thought to result from the invasion of the CNS by HIV. Phosphonoformate has anti-HIV activity but due to its charged nature is excluded from the CNS by the blood-brain barrier. Lipophilic triesters of phosphonoformate designed to improve transport properties are unsuitable prodrugs due to their rapid and complicated hydrolysis, involving competitive P-O and P-C bond cleavage. Diesters, though hydrolytically stable, are considered too polar to passively diffuse into the CNS. Hydrophilic drugs mimicking endogenous nutrients are known to be actively transported across the blood-brain barrier. In this thesis the possibility that diesters of phosphonoformate may be actively transported is investigated. Triesters of phosphonoformate with labile aryl carboxyl esterrs were synthesised and their hydrolysis followed by 31P NMR spectroscopy. The triesters were found to undergo rapid hydrolysis via P-C bond cleavage to the phosphite. Phosphonoformate diesters designed to be analogues of actively transported -keto acids have been synthesised and fully characterised. Tyrosine-phosphonoformate and lipid-phosphonoformate conjugates have also been synthesised and characterised. An in vitro model of the blood-brain barrier utilising confluent monolayers of porcine brain microvessel endothelial cells grown on a permeable support has been established. The presence of enzyme and antigen markers specific to the blood-brain barrier has been demonstrated for the endothelial cells and the diffusional properties of the model investigated with hydrophilic and lipophilic compounds. Active transport systems for -keto acids and large amino acids have been identified in the endothelial cell monolayers using 14C-pyruvate and 3H-L-tyrosine respectively. Temperature and concentration dependence of the two systems have been demonstrated and transport constants calculated. Competition with 14C-pyruvate transport was shown with other monocarboxylic acids including the anti-epileptic drug valproate. Stereospecificity was shown in that L-lactate inhibited pyruvate transport while D-lactate did not. Sodium methyl methoxycarbonylphosphonate, a phosphonoformate diester was shown not to compete for 14C-pyruvate transport indicating that this compound has no affinity for the carrier. Competition with 3H-L-tyrosine transport was shown with other large amino acids, including the anti-Parkinsonian agent L-dopa. Stereospecificity was shown using L- and D-tyrosine and L- and D-dopa. The tyrosine-phosphonoformate conjugate, which was stable under the experimental conditions, was shown to compete with 3H-Ltyrosine transport indicating that it may be actively transported at the blood-brain barrier. Thirty two triesters, diesters and monoesters of phosphonoformate, showed no activity in an anti-HIV screen above that attributable to hydrolysis to the parent compound.
Resumo:
Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.
Resumo:
This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.
Resumo:
Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.
Resumo:
Polycrystalline zirconium nitride (ZrN) samples were irradiated with He +, Kr ++, and Xe ++ ions to high (>1·10 16 ions/cm 2) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nanoindentation. Nanoindentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples.
Resumo:
The approach to construction, structuring class of tasks, technology of the use and stages of modernization systems support of decision-making in composition the operative-dispatch control computer-based system by the gas-transport system of Ukraine is considered.