969 resultados para Frost.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kaolinite (Kaol) intercalated with potassium acetate (Ac) was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry. Molecular dynamic simulation was performed to investigate the structure of Kaol–Ac intercalation complex and the hydrogen bonds between Kaol and intercalated Ac andwater using INTERFACE forcefield. The acetate anions andwater arranged in a bilayer structure in the interlayer space of Kaol. The potassium cations distributed in the interlayer space and strongly coordinated with acetate anions aswell aswater rather than keyed into the ditrigonal holes of tetrahedral surface of Kaol. Strong hydrogen bonds formed between the hydrogen atoms of hydroxyl on the octahedral surface and oxygen atoms of both acetate anions and water. The acetate anions andwater also weakly bonded hydrogen to the silica tetrahedral surface through their hydrogen atoms with the oxygen atoms of silica tetrahedral surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of kaolinite–methanol complexes with different basal spacings were synthesized using guest displacement reactions of the intercalation precursors kaolinite–N-methyformamide (Kaol–NMF), kaolinite–urea (Kaol–U), or kaolinite–dimethylsulfoxide (Kaol–DMSO), with methanol (Me). The interaction of methanol with kaolinite was examined using X-ray diffraction (XRD), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR). Kaolinite (Kaol) initially intercalated with N-methyformamide (NMF), urea (U), or dimethylsulfoxide (DMSO) before subsequent reaction with Me formed final kaolinite–methanol (Kaol–Me) complexes characterized by basal spacing ranging between 8.6 Å and 9.6 Å, depending on the pre-intercalated reagent. Based on a comparative analysis of the three Kaol–Me displacement intercalation complexes, three types of Me intercalation products were suggested to have been present in the interlayer space of Kaol: (1) molecules grafted onto a kaolinite octahedral sheet in the form of a methoxy group (Al-O-C bond); (2) mobile Me and/or water molecules kept in the interlayer space via hydrogen bonds that could be partially removed during drying; and (3) a mixture of types 1 and 2, with the methoxy group (Al-O-C bond) grafted onto the Kaol sheet and mobile Me and/or water molecules coexisted in the system after the displacement reaction by Me. Various structural models that reflected four possible complexes of Kaol–Me were constructed for use in a complimentary computational study. Results from the calculation of the methanol kaolinite interaction indicate that the hydroxyl oxygen atom of methanol plays the dominant role in the stabilization and localization of the molecule intercalated in the interlayer space, and that water existing in the intercalated Kaol layer is inevitable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O–H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2− units were observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross-link density, microstructure and mechanical properties of styrene butadiene rubber (SBR) composites filled with different particle sized kaolinites are investigated. With the increase of kaolinite particle size, the cross-link density of the filled SBR composites, the dispersibility and orientation degree of kaolinite particles gradually decrease. Some big cracks in filled rubber composites are distributed along the fringe of kaolinite aggregates, and the absorbance of all the absorption bands of kaolinites gradually increase with the increase of kaolinite particle size. All mechanical property indexes of kaolinite filled SBR composites decrease due to the decrease of cross-linking and reduction of interface interaction between filler and rubber matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral kaliborite. The sample originated from the Inder B deposit, Atyrau Province, Kazakhstan, and is part of the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil. The mineral is characterized by a single intense Raman band at 756 cm−1 assigned to the symmetric stretching modes of trigonal boron. Raman bands at 1229 and 1309 cm−1 are assigned to hydroxyl in-plane bending modes of boron hydroxyl units. Raman bands are resolved at 2929, 3041, 3133, 3172, 3202, 3245, 3336, 3398, and 3517 cm−1. These Raman bands are assigned to water stretching vibrations. A very intense sharp Raman band at 3597 cm−1 with a shoulder band at 3590 cm−1 is assigned to the stretching vibration of the hydroxyl units. The Raman data are complimented with infrared data and compared with the spectrum of kaliborite downloaded from the Arizona State University database. Differences are noted between the spectrum obtained in this work and that from the Arizona State University database. This research shows that minerals stored in a museum mineral collection age with time. Vibrational spectroscopy enhances our knowledge of the molecular structure of kaliborite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramsite plays a significant role as a biological aerated filter (BAF) in the treatment of wastewater. In this study, a mixture of goethite, sawdust and palygorskite clay was thermally treated to form magnetic porous ceramsite (MPC). An optimization experiment was conducted to measure the compressive strength of the MPC. X-ray diffraction (XRD), scanning electron microscopy (SEM), and polarizing microscopy (PM) characterized the pore structure of the MPC. The results show that a combination of goethite, sawdust and palygorskite clay with a mass ratio of 10:2:5 is suitable for the formation of MPC. The compressive strength of MPC conforms to the Chinese national industrial standard (CJ/T 299-2008) for wastewater treatment. The SEM and PM results also show that the uniform and interconnected pores in MPC were well suited for microbial growth. The MPC produced in this study can serve as a biomedium for advanced wastewater treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheat is occasionally exposed to freezing temperatures during ear emergence and can suffer severe frost damage. Few studies have attempted to understand the characteristics of freezing and frost damage to wheat during late development stages. It was clearly shown that wheat appears to have an inherent frost resistance to temperatures down to −5 °C but is extensively damaged below this temperature. Acclimation, whilst increasing the frost resistance of winter wheat in a vegetative state was incapable of increasing frost resistance of plants at ear emergence. It is proposed that the ability to upregulate frost resistance is lost once vernalisation requirement is fulfilled. Culms and ears of wheat were able to escape frost damage at temperatures below −5 °C by supercooling even to as low as −15 °C and evidence collected by infrared thermography suggested that individual culms on a plant froze as independent units during freezing with little or no cross ice-nucleation strategies to protect wheat from frost damage in the field appear to revolve around avoiding ice nucleation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present review identifies various constraints relating to poor adoption of ley-pastures in south-west Queensland, and suggests changes in research, development and extension efforts for improved adoption. The constraints include biophysical, economic and social constraints. In terms of biophysical constraints, first, shallower soil profiles with subsoil constraints (salt and sodicity), unpredictable rainfall, drier conditions with higher soil temperature and evaporative demand in summer, and frost and subzero temperature in winter, frequently result in a failure of established, or establishing, pastures. Second, there are limited options for legumes in a ley-pasture, with the legumes currently being mostly winter-active legumes such as lucerne and medics. Winter-active legumes are ineffective in improving soil conditions in a region with summer-dominant rainfall. Third, most grain growers are reluctant to include grasses in their ley-pasture mix, which can be uneconomical for various reasons, including nitrogen immobilisation, carryover of cereal diseases and depressed yields of the following cereal crops. Fourth, a severe depletion of soil water following perennial ley-pastures (grass + legumes or lucerne) can reduce the yields of subsequent crops for several seasons, and the practice of longer fallows to increase soil water storage may be uneconomical and damaging to the environment. Economic assessments of integrating medium- to long-term ley-pastures into cropping regions are generally less attractive because of reduced capital flow, increased capital investment, economic loss associated with establishment and termination phases of ley-pastures, and lost opportunities for cropping in a favourable season. Income from livestock on ley-pastures and soil productivity gains to subsequent crops in rotation may not be comparable to cropping when grain prices are high. However, the economic benefits of ley-pastures may be underestimated, because of unaccounted environmental benefits such as enhanced water use, and reduced soil erosion from summer-dominant rainfall, and therefore, this requires further investigation. In terms of social constraints, the risk of poor and unreliable establishment and persistence, uncertainties in economic and environmental benefits, the complicated process of changing from crop to ley-pastures and vice versa, and the additional labour and management requirements of livestock, present growers socially unattractive and complex decision-making processes for considering adoption of an existing medium- to long-term ley-pasture technology. It is essential that research, development and extension efforts should consider that new ley-pasture options, such as incorporation of a short-term summer forage legume, need to be less risky in establishment, productive in a region with prevailing biophysical constraints, economically viable, less complex and highly flexible in the change-over processes, and socially attractive to growers for adoption in south-west Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eighty six full-sib Corymbia F1 hybrid families (crosses between C. torelliana and four spotted gum taxa: C. citriodora subsp. variegata, C. citriodora subsp. citriodora, C. henryi and C. maculata), were planted in six trials across six disparate sites in south-eastern Queensland to evaluate their productivity and determine their potential utility for plantation forestry. In each trial, the best-growing 20% of hybrid families grew significantly faster (P=0.05) than open-pollinated seedlots of the parent species Corymbia citriodora subsp. variegata, ranging from 107% to 181% and 127% to 287% of the height and diameter respectively. Relative performance of hybrid families growing on more than one site displayed consistency in ranking for growth across sites and analysis showed low genotype-by-environment interaction. Heritability estimates based on female and male parents across two sites at age six years for height and diameter at breast height, were high (0.62±0.28 to 0.64±0.35 and 0.31±0.21 to 0.69±0.37 respectively), and low to moderate (0.03±0.04 to 0.33±0.22) for stem straightness, branch size, incidence of ramicorns, and frost and disease resistance traits at ages one to three years. The proportion of dominance variance for height and diameter had reduced to zero by age six years. Based on these promising results, further breeding and pilot-scale family forestry and clonal forestry deployment is being undertaken. These results have also provided insights regarding the choice of a future hybrid breeding strategy.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.