846 resultados para Fracture fixation
Resumo:
Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.
Resumo:
The delamination or splitting of mechanical test specimens of rolled steel plate is a phenomenon that has been studied for many years. In the present study, splitting during fracture of tensile and Charpy V-notch (CVN) test specimens is examined in a high-strength low-alloy plate steel. It is shown that delamination did not occur in test specimens from plate in the as-rolled condition, but was severe in material tempered in the temperature range 500 °C to 650 °C. Minor splitting was seen after heating to 200 °C, 400 °C, and 700 °C. Samples that had been triple quenched and tempered to produce a fine equiaxed grain size also did not exhibit splitting. Microstructural and preferred orientation studies are presented and are discussed as they relate to the splitting phenomenon. It is concluded that the elongated as-rolled grains and grain boundary embrittlement resulting from precipitates (carbides and nitrides) formed during reheating were responsible for the delamination.