880 resultados para Forecasting and replenishment (CPFR)
Resumo:
A number of studies have addressed the relationship between intra-personal uncertainty and inter-personal disagreement about the future values of economic variables such as output growth and inflation using the SPF. By making use of the SPF respondents' probability forecasts of declines in output, we are able to construct a quarterly series of output growth uncertainty to supplement the annual series that are often used in such analyses. We also consider the relationship between disagreement and uncertainty for probability forecasts of declines in output.
Resumo:
This article explains the basis for a theory of economic forecasting developed over the past decade by the authors. The research has resulted in numerous articles in academic journals, two monographs, Forecasting Economic Time Series, 1998, Cambridge University Press, and Forecasting Nonstationary Economic Time Series, 1999, MIT Press, and three edited volumes, Understanding Economic Forecasts, 2001, MIT Press, A Companion to Economic Forecasting, 2002, Blackwells, and the Oxford Bulletin of Economics and Statistics, 2005. The aim here is to provide an accessible, non-technical, account of the main ideas. The interested reader is referred to the monographs for derivations, simulation evidence, and further empirical illustrations, which in turn reference the original articles and related material, and provide bibliographic perspective.
Resumo:
We evaluate the predictive power of leading indicators for output growth at horizons up to 1 year. We use the MIDAS regression approach as this allows us to combine multiple individual leading indicators in a parsimonious way and to directly exploit the information content of the monthly series to predict quarterly output growth. When we use real-time vintage data, the indicators are found to have significant predictive ability, and this is further enhanced by the use of monthly data on the quarter at the time the forecast is made
Resumo:
We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.
Resumo:
We consider whether survey respondents’ probability distributions, reported as histograms, provide reliable and coherent point predictions, when viewed through the lens of a Bayesian learning model. We argue that a role remains for eliciting directly-reported point predictions in surveys of professional forecasters.
Resumo:
Recent literature has suggested that macroeconomic forecasters may have asymmetric loss functions, and that there may be heterogeneity across forecasters in the degree to which they weigh under- and over-predictions. Using an individual-level analysis that exploits the Survey of Professional Forecasters respondents’ histogram forecasts, we find little evidence of asymmetric loss for the inflation forecasters
Resumo:
This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One-month and three-month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving-average model leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant approaches.
Resumo:
This paper examines the lead–lag relationship between the FTSE 100 index and index futures price employing a number of time series models. Using 10-min observations from June 1996–1997, it is found that lagged changes in the futures price can help to predict changes in the spot price. The best forecasting model is of the error correction type, allowing for the theoretical difference between spot and futures prices according to the cost of carry relationship. This predictive ability is in turn utilised to derive a trading strategy which is tested under real-world conditions to search for systematic profitable trading opportunities. It is revealed that although the model forecasts produce significantly higher returns than a passive benchmark, the model was unable to outperform the benchmark after allowing for transaction costs.
Resumo:
This paper reviews nine software packages with particular reference to their GARCH model estimation accuracy when judged against a respected benchmark. We consider the numerical consistency of GARCH and EGARCH estimation and forecasting. Our results have a number of implications for published research and future software development. Finally, we argue that the establishment of benchmarks for other standard non-linear models is long overdue.
Resumo:
This paper examines the predictability of real estate asset returns using a number of time series techniques. A vector autoregressive model, which incorporates financial spreads, is able to improve upon the out of sample forecasting performance of univariate time series models at a short forecasting horizon. However, as the forecasting horizon increases, the explanatory power of such models is reduced, so that returns on real estate assets are best forecast using the long term mean of the series. In the case of indirect property returns, such short-term forecasts can be turned into a trading rule that can generate excess returns over a buy-and-hold strategy gross of transactions costs, although none of the trading rules developed could cover the associated transactions costs. It is therefore concluded that such forecastability is entirely consistent with stock market efficiency.
Resumo:
The authors model retail rents in the United Kingdom with use of vector-autoregressive and time-series models. Two retail rent series are used, compiled by LaSalle Investment Management and CB Hillier Parker, and the emphasis is on forecasting. The results suggest that the use of the vector-autoregression and time-series models in this paper can pick up important features of the data that are useful for forecasting purposes. The relative forecasting performance of the models appears to be subject to the length of the forecast time-horizon. The results also show that the variables which were appropriate for inclusion in the vector-autoregression systems differ between the two rent series, suggesting that the structure of optimal models for predicting retail rents could be specific to the rent index used. Ex ante forecasts from our time-series suggest that both LaSalle Investment Management and CB Hillier Parker real retail rents will exhibit an annual growth rate above their long-term mean.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.