981 resultados para Foot-shock stress
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015
Resumo:
v.38:no.2(1950)
Resumo:
n.s. no.21(1993)
Resumo:
Stress, molecular crowding and mutations may jeopardize the native folding of proteins. Misfolded and aggregated proteins not only loose their biological activity, but may also disturb protein homeostasis, damage membranes and induce apoptosis. Here, we review the role of molecular chaperones as a network of cellular defenses against the formation of cytotoxic protein aggregates. Chaperones favour the native folding of proteins either as "holdases", sequestering hydrophobic regions in misfolding polypeptides, and/or as "unfoldases", forcibly unfolding and disentangling misfolded polypeptides from aggregates. Whereas in bacteria, plants and fungi Hsp70/40 acts in concert with the Hsp100 (ClpB) unfoldase, Hsp70/40 is the only known chaperone in the cytoplasm of mammalian cells that can forcibly unfold and neutralize cytotoxic protein conformers. Owing to its particular spatial configuration, the bulky 70 kDa Hsp70 molecule, when distally bound through a very tight molecular clamp onto a 50-fold smaller hydrophobic peptide loop extruding from an aggregate, can locally exert on the misfolded segment an unfolding force of entropic origin, thus destroying the misfolded structures that stabilize aggregates. ADP/ATP exchange triggers Hsp70 dissociation from the ensuing enlarged unfolded peptide loop, which is then allowed to spontaneously refold into a closer-to-native conformation devoid of affinity for the chaperone. Driven by ATP, the cooperative action of Hsp70 and its co-chaperone Hsp40 may thus gradually convert toxic misfolded protein substrates with high affinity for the chaperone, into non-toxic, natively refolded, low-affinity products. Stress- and mutation-induced protein damages in the cell, causing degenerative diseases and aging, may thus be effectively counteracted by a powerful network of molecular chaperones and of chaperone-related proteases.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Department of Biological Science a la University of Lincoln, a la Gran Bretanya, entre octubre i desembre del 2006. L'objectiu del present assaig va ser desciure les respostes antioxidants d'estrès en gossos sotmesos a cirurgia electiva, en condicions de pràctica clínica normals, durant les fases de preoperatori i postoperatori.Setze gossos van ser sotmesos a orquiectomia o ovariohisterectomia electives, utilitzant un protocol quirúrgic estàndard. Durant les fases preoperatoria i postoperatoria, cada animal va ser confinat a la Unitat de Cures Intensives, temps durant el qual es va estudiar la seva resposta antioxidant. Els valors obtinguts a diferents temps van ser comparats amb el valor basal, que s'havia obtingut del mateix animal estant aquest en el seu ambient habitual. No es van detectar variacions significants causades per l'estrès perioperatori. Els valors màxims es van observar durant la fase preoperatoria, just després que l'animal fós confinat a la Unitat de Cures Intensives, moment en el que l'estrès percebut era degut a les amenaces psicològiques de una àrea restringida i de la manipulació per persones desonegudes. L'abscència de variacions significants podrien ser degudes al sistema i el temps d'emmagatzement de les mostres. En humana s'han descrit les alteracions en l'activitat dels antioxidants sèrics després d'un mes d'emmagatzematent. Per definir l'estabilitat, després de la recollida de mostres, de l'activitat dels antioxidants en sèrum de gos és necessari realitzar més estudis.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.
Resumo:
BACKGROUND: Although long-term implications of cancer in childhood or adolescence with regard to medical conditions are well documented, the impact on mental health and on response to stress, which may be an indicator of psychological vulnerability, is not yet well understood. In this study, psychological and physiological responses to stress were examined.¦PROCEDURE: Fifty-three participants aged 18-39 years (n = 25 survivors of childhood or adolescence cancer, n = 28 controls) underwent an experimental stress test, the Trier Social Stress Test (TSST). Participants were asked to provide repeated evaluations of perceived stress on visual-analogical scales and blood samples were collected before and after the TSST to measure plasma cortisol.¦RESULTS: The psychological perception of stress was not different between the two groups. However, the cancer survivors group showed a higher global plasma cortisol level as well as higher amplitude in the response to the TSST. The global cortisol level in cancer survivors was increased when depression symptoms were present. The subjective perception of stress and the plasma cortisol levels were only marginally correlated in both groups.¦CONCLUSIONS: It is suggested that the exposure to a life-threatening experience in childhood/adolescence increases the endocrine response to stress, and that the presence of depressive symptoms is associated with an elevation of plasma cortisol levels. A better knowledge of these mechanisms is important given that the dysregulations of the stress responses may cause psychological vulnerability. Pediatr Blood Cancer 2012; 59: 138-143. © 2011 Wiley Periodicals, Inc.
Resumo:
In previous work we have applied the environmental multi-region input-output (MRIO) method proposed by Turner et al (2007) to examine the ‘CO2 trade balance’ between Scotland and the Rest of the UK. In McGregor et al (2008) we construct an interregional economy-environment input-output (IO) and social accounting matrix (SAM) framework that allows us to investigate methods of attributing responsibility for pollution generation in the UK at the regional level. This facilitates analysis of the nature and significance of environmental spillovers and the existence of an environmental ‘trade balance’ between regions. While the existence of significant data problems mean that the quantitative results of this study should be regarded as provisional, we argue that the use of such a framework allows us to begin to consider questions such as the extent to which a devolved authority like the Scottish Parliament can and should be responsible for contributing to national targets for reductions in emissions levels (e.g. the UK commitment to the Kyoto Protocol) when it is limited in the way it can control emissions, particularly with respect to changes in demand elsewhere in the UK. However, while such analysis is useful in terms of accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. In this paper we argue that where analysis of marginal changes in activity is required, a more flexible interregional computable general equilibrium approach that models behavioural relationships in a more realistic and theory-consistent manner, is more appropriate and informative. To illustrate our analysis, we compare the results of introducing a positive demand stimulus in the UK economy using both IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels affect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
Objective : The announcement, prenatally or at birth, of a cleft lip and/or palate represents a challenge for the parents. The purpose of this study is to identify parental working internal models of the child (parental representations of the child and relationship in the context of attachment theory) and posttraumatic stress disorder symptoms in mothers of infants born with a cleft. Method : The study compares mothers with a child born with a cleft (n = 22) and mothers with a healthy infant (n = 36). Results : The study shows that mothers of infants with a cleft more often experience insecure parental working internal models of the child and more posttraumatic stress symptoms than mothers of the control group. It is interesting that the severity or complexity of the cleft is not related to parental representations and posttraumatic stress disorder symptoms. The maternal emotional involvement, as expressed in maternal attachment representations, is higher in mothers of children with a cleft who had especially high posttraumatic stress disorder symptoms, as compared with mothers of children with a cleft having fewer posttraumatic stress disorder symptoms. Discussion : Mothers of children with a cleft may benefit from supportive therapy regarding parent-child attachment, even when they express low posttraumatic stress disorder symptoms.