998 resultados para Food Futures Cube
Resumo:
The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
In recent years, much progress has been made in the rearing of fish larvae fed only artificial diets. A preliminary study was made in an attempt to evaluate the effects of live food and formulated diets on survival, growth and body protein content of first-feeding larvae of Plelteobagrus fulvidraco. Three test diets varying in protein level were formulated: Feed 1 containing 45% protein, Feed 2 with 50% protein and Feed 3 with 55% protein. Larvae fed live food (newly hatched Artemia, unenriched) were the control. The experiment started 3 days post-hatch and lasted for 23 days. At the end of the 23-day trial, survival was best in the control group (65.6%) whereby the final body weight and specific growth rate (SGR) were significantly lower than those in the test feed groups. At the same time, coefficients of variation for SGR and final body weight in the test groups were significantly higher than those in the control. Whole body protein content in all treatments showed a similar tendency during development: significantly higher 3 days post-hatch, then decreasing significantly, and then increasing unstatistically 10 days post-hatch. All results suggest that live food is still better for first-feeding larvae of P. fulvidraco, since live food leads to healthier larvae growth.
Resumo:
Food web structure was studied by using carbon and nitrogen isotope ratios in a hypereutrophic subtropical Chinese lake, Lake Donghu. High external nutrient loading and the presence of abundant detritus from submersed macrophytes were responsible for the high sediment delta(15)N and delta(13)C, respectively. C-13 was significantly higher in submersed macrophytes than in other macrophytes. The similar delta(13)C values in phytoplankton, zooplankton, zoobenthos, and planktivorous fish indicate that phytoplankton was the major food source for the consumers. By using a delta(15)N mass balance model, we estimate that the contributions of zooplankton to the diet of silver carp and bighead carp were 54% and 74%, respectively, which is in agreement with previous microscopic observations on intestinal contents of these fishes.
Resumo:
The compensatory responses of juvenile gibel carp and Chinese longsnout catfish to four cycles of 1 part of a study designed to determine feeding regimes that would maximise growth rates. Both species showed compensatory growth in the re-feeding periods. The compensation was not sufficient for the deprived fish to match the growth trajectories of controls fed to satiation daily. The compensatory growth response was more clearly defined in the later cycles. The deprived fish showed hyperphagia during the 2-week periods of re-feeding and the hyperphagic response was clearer in the later cycles. The hyperphagia tended to persist for both weeks of the re-feeding period. The gibel carp showed no difference in gross growth efficiency between deprived and control fish. In the catfish, the gross growth efficiency of the deprived fish was marginally higher than that of control fish, but the efficiency varied erratically from week to week. Over the experiment, the deprived fish achieved growth rates 75-80% of those shown by control fish, although fed at a frequency of 66%. There was no evidence of growth over-compensation with the deprivation-re-feeding protocol used in this study. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The food intake, growth, food conversion ratio and survival of yearling pufferfish, Fugu obscurus Abe, were investigated under different water salinity conditions over a 54-day period. Within the salinity regimes of 0 (freshwater), 8, 18, and 35parts per thousand, the food intake levels were 0.97%, 1.43%, 1.19% and 1.01%, respectively; food conversion ratios were 1.31, 1.93, 1.61 and 1.36, respectively; and specific growth rates were 0.41%, 1.15%, 0.84%, and 0.35%, respectively. The three data series were reduced with increasing salinity. However, the survival rates did not show the same tendencies, which were 80%, 100%, 100%, and 67%, respectively. There were significant differences among the treatments. In conclusion, the yearling pufferfish optimum culture salinity condition was about 8parts per thousand.
Resumo:
Body length, instar duration, fecundity, and survival rate of Moina irrasa from a subtropical Chinese lake were studied at three food concentrations (4, 8, and 40 mg/L, wet weight) and six temperatures (10, 15, 20, 25, 30, and 35degreesC) in the laboratory. Body length tended to decrease with increase of temperature, while the trend was reversed as food concentration rose. M. irrasa had three juvenile instars, except there were four at 10degreesC, and the number of adult instars showed great variation (3-15). Water temperature and food concentration both affected the duration time of adult instars. The largest broods were from the third to sixth adult instars, depending on food and temperature, and the mean highest number of offspring per brood was 56 at 25degreesC. A significant relationship between body length and brood size appeared at high (40 mg/L) and medium (8 mg/L) food concentrations, while there was no significant relationship at low food concentration except at 25 degreesC. The intrinsic rate of population increase ranged between 0.104 and 1.825 ind./day.
Resumo:
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of I week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Gastric mills of 362 specimens of two-year-old Chinese mitten crab (Eriocheir sinensis), which contained recognizable food items, from Lake Bao'an, China were examined. The food items were macrophytes, algae, arthropods, oligochaetes, fish, protozoa, rotifers, gastropods, and detritus, and the percent frequencies of occurrence (FO) for these items were 87.3%, 82.0%, 48.2%, 28.2%, 28.7%, 0.3%, 0.6%, 0.3% and 88.7%, respectively. Unidentified animal tissue was often observed and had a FO of 46.1%. In total, FO of plants (macrophytes + algae) was 87.7% and of animals was 89.8%. However, 5.8% of the gastric mills contained only animals, 5.3% had only macrophytes, and 0.3% contained only algae. There was no significant difference (p>0.05) in food habits between male and female crabs. The ratio of cell number of macrophytes to algae was about 156:1.
Resumo:
Gastric mills were examined from 98 early juvenile Chinese mitten crabs (Eriocheir sinensis) from experimental tanks. Recognizable food items were macrophytes, algae, oligochaetes, and detritus; their percent frequencies of occurrence were 94.6%, 86.5%, 10.7%, and 18.3%, respectively. The crabs had a diet feeding rhythm.
Resumo:
The effect of food concentration on the life history of three types of Brachionus calciflorus females (amictic, unfertilized mictic and fertilized mictic female) was studied with replicated individual cultures at 25 degrees and at four food concentrations (1.5, 3.0, 6.0 and 9.0 x 10(6) cells mL(-1)) of Scenedesmus obliquus. There were highly significant effects of both food concentration and female type, independently and in interaction on the duration of juvenile period of the rotifer, but neither a;ere the effects on the duration of post-reproductive period and mean life-span. The duration of juvenile period of unfertilized mictic female at the food concentration of 9.0 x 10(6) cells mL(-1) was the longest among all the food concentration-female type combinations. Both food concentration and female type influenced significantly the duration of reproductive period and the number of eggs produced by each type of female per life cycle, respectively. There was, however, no significant interaction between food level and female type. Among the three types of females, the number of eggs produced by an unfertilized mictic female was the largest. and that of a fertilized mictic female was the smallest.
Resumo:
The compensatory growth responses of individual juveniles of two co-existing species were compared after identical periods of starvation to determine inter-specific similarities and differences. The carnivorous stickleback Gasterosteus aculeatus was compared with the omnivorous minnow Phoxinus phoxinus. Both species experienced 1 or 2 weeks of starvation before being re-fed ad libitum. The two species differed in their response to the starvation periods, with minnows showing a lower weight-specific loss. Both species showed compensatory responses in appetite, growth and to a lesser extent, growth efficiency. Minnows wholly compensated for 1 and 2 weeks of starvation. At the end of the experiment, sticklebacks starved For 2 weeks were still showing a compensatory response and had nut achieved full compensation. The compensatory responses of the sticklebacks showed a lag of a week before developing in the re-feeding phase, whereas the response of the minnows was immediate. Analysis of lipid and dry matter concentrations suggested that the compensatory response restored reserve lipids while also bringing the fish back to the growth trajectory of continuously fed fish. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
Population parameters of Daphnia rosea were studied at various concentrations of Chlorella sp. (0.25, 0.75 and 3.0 mg C l(-1)) at several temperatures (20, 25, 28, and 30 degrees C) in the laboratory. Although there were some differences in the degrees of the effects of the various temperature-food combinations, both food and temperature exerted influences on almost all of the main population parameters of D. rosea. At a water temperature of 28 degrees C, growth and reproduction were reduced, and at the lowest food level (0.25 mgC l(-1)), reproduction failed. D, rosea did not survive at 30 degrees C in spite of abundant food supply, indicating that 30 degrees C is a physiological limit. A positive relationship between body length and brood size was recognized at high and medium food levels. The slope of the regression was the highest at the highest food level and at the lowest temperature (20 degrees C). The low food level exerted a negative influence on the net reproductive rate by lowering the size of egg-bearing females, by decreasing the brood size of each size class, by decreasing the brood number per female, and by increasing the period of empty brood chamber. High water temperature (28 degrees C) also exerted a negative influence on the net reproductive rate in a similar way. For the better understanding of the key factors driving the midsummer dynamics of daphnids in the field, it may be of crucial importance to compare the population parameters of the field populations with experimentally derived values under controlled conditions of food concentration and temperature.
Resumo:
Rates of maximum food consumption and growth were determined for immature mandarin fish Siniperca chuatsi (47.2-540.2 g) and Chinese snakehead Channa argus (45.0-546.2 g) at 10, 15, 20, 25, 30 and 35 degrees C. The relationship between maximum rate of food consumption (C-max), body weight (W) and temperature (T) was described by the multiple regression equations: lnC(max) = -4.880 + 0.597 lnW+0.284T - 0.0048T(2) for the mandarin fish, and lnC(max)= -6.718 + 0.522 lnW+0.440T-0.0077T(2) for the Chinese snakehead. The optimum temperature for consumption was 29.6 degrees C for the mandarin fish and 28.6 degrees C for the Chinese snakehead. The relationship between growth rate (G), body weight and temperature was ln(G+0.25)= - 0.439 - 0.500 lnW+0.270T - 0.0046T(2) for the mandarin fish, and ln(G+0.25)= - 6.150+ (0.175 - 0.026T) lnW+0.571T - 0.0078T(2) for the Chinese snakehead. The weight exponent in the growth-weight relationship was -0.83 for the mandarin fish, but decreased with increasing temperature for the Chinese snakehead. The optimum temperature for growth was 29.3 degrees C for the mandarin fish, but tended to decrease with increasing weight for the Chinese snakehead, being 30.3 degrees C for a 45-g fish, and 26.1 degrees C for a 550-g fish. (C) 1998 The Fisheries Society of the British Isles.