967 resultados para Fibroblast Motility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Taking advantage of two transgenic lines, glast.DsRed and crx.gfp, that express fluorescent proteins in glial and photoreceptor cells respectively, we investigate the role of glast-positive glial cells (GPCs) in the survival/differentiation/proliferation of age-matched photoreceptor cells. Methods: Primary retinal cells were isolated from newborn transgenic mouse retina (glast.dsRed::crx.gfp) at postnatal day (P0/P1) and propagated in defined medium containing epidermal growth factor (EGF) and fibroblast growth factor 2 (bFGF). By flow-sorting another population of pure GPCs was isolated. Both populations were expanded and analyzed for the presence of specific retinal cell markers. Notably, the primary cell culture collected from the transgenic line glast.dsRed::crx.gfp showed a conspicuous presence of immature photoreceptors growing on top of GPCs. In order to reveal the role of such cells in the survival/differentiation/proliferation of photoreceptors we set up in vitro cultures of retina-derived cells that allowed long-term time-lapse recordings charting every cell division, death and differentiation event. To assess the regenerative potential of GPCs we challenged them with compounds mimicking retinal degeneration (NMU, NMDA, Zaprinast). Mass spectrometry (MS), immunostainings and other molecular approaches were performed to reveal adhesion molecules involved in the relationship between glial cells and photoreceptors. Results: Both primary cell lines were highly homogenous, with an elongated morphology and the majority expressed Müller glia markers (MG) such as glast, blbp, glt-1, vimentin, glutamine synthetase (GS), GFAP, cd44, mash1 and markers of reactive Müller glia such as nestin, pax6. Conversely, none of them were found positive for retinal neuron markers like tuj1, otx2, recoverin. Primary cultures of GPCs show the incapability of glial cells to give rise to photoreceptors in both wild type or degenerative environment. Furthermore, primary cultures of pure GPCs challenged with different compounds did not highlight the production of new glial cell-derived photoreceptors. Adhesion molecules involved in the contact between photoreceptors and glial cells are still under investigation. Conclusions: Primary glia cells do not give rise to photoreceptor cells in wt and degenerative conditions at least in vitro. The roles of glial cells seem to be more linked to the maintenance/proliferation of photoreceptor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1), oxyntomodulin (OXM), and glucagon are posttranslational end products of the glucagon gene expressed in intestinal L-cells. In vivo, these peptides are potent inhibitors of gastric acid secretion via several pathways, including stimulation of somatostatin release. We have examined the receptors through which these peptides stimulate somatostatin secretion using the somatostatin-secreting cell line RIN T3. tGLP-1, OXM, and glucagon stimulated somatostatin release and cAMP accumulation in RIN T3 cells to similar maximum levels, with ED50 values close to 0.2, 2, and 50 nM and 0.02, 0.3, and 8 nM, respectively. Binding of [125I]tGLP-1, [125I]OXM, and [125I]glucagon to RIN T3 plasma membranes was inhibited by the three peptides, with relative potencies as follows: tGLP-1 &gt; OXM &gt; glucagon. Whatever the tracer used, the IC50 for tGLP-1 was close to 0.15 nM and was shifted rightward for OXM and glucagon by about 1 and 2-3 orders of magnitude, respectively. Scatchard analyses for the three peptides were compatible with a single class of receptor sites displaying a similar maximal binding close to 2 pmol/mg protein. In the hamster lung fibroblast cell line CCL39 transfected with the receptor for tGLP-1, binding of [125I]tGLP-1 was inhibited by tGLP-1, OXM, and glucagon, with relative potencies close to those obtained with RIN T3 membranes. Chemical cross-linking of [125I]tGLP-1, [125I]OXM, and [125I]glucagon revealed a single band at 63,000 mol wt, the intensity of which was dose-dependently reduced by all three peptides. These data suggest that in the somatostatin-secreting cell line RIN T3, OXM and glucagon stimulate somatostatin release through a tGLP-1-preferring receptor. This suggests that some biological effects, previously described for these peptides, might be due to their interaction with this receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite advances in surgery, radio- and chemotherapy, therapeutic approaches for patients with head and neck squamous carcinoma (HNSCC) need to be improved. Immunotherapies eliciting tumor specific immune responses might constitute novel treatment options. We therefore investigated the expression and immunogenicity of two tumor-associated antigens (TAA) the receptor for hyaluronic acid mediated motility (RHAMM) and carboanhydrase IX (G250/CAIX) in HNSCC patients. Twenty-two HNSCC samples were examined for the expression of RHAMM and G250 by Western blotting and immunohistochemistry, 14/22 samples were tested for HLA-A2 expression by flow cytometry. For 8/22 samples single tumor-cell suspensions were generated, and mixed lymphocyte peptide cultures (MLPC) were performed to evaluate the frequencies of cytotoxic T cells specifically recognizing RHAMM and G250 using Tetramer staining/multi-color flow cytometry and enzyme linked immunosorbent spot (ELISPOT) assays. RHAMM and G250 were expressed in 73 and 80% of the HNSCC samples at the protein level. A co-expression of both TAAs could be detected in 60% of the patients. In 4/8 HLA-A2+ patients, 0.06-0.13% of CD8+ effector T cells recognized Tetramers for RHAMM or G250 and secreted IFNgamma and granzyme B in ELISPOT assays. RHAMM and G250 are expressed at high frequency and high protein level in HNSCCs and are recognized by cytotoxic CD8+ effector T cells. Therefore both TAAs constitute interesting targets for T cell based immunotherapies for HNSCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prokineticin, 1 (PROK1) and prokineticin 2 (PROK2), are two closely related proteins that were identified as the mammalian homologs of their two amphibian homologs, mamba intestinal toxin (MIT-1) and Bv8. MIT-1 was initially identified as a non-toxic constituent in the venom of the black mamba snake (Dendroaspis polylepis) (Joubert and Strydom, 1980) while Bv8 was identified in the skin secretion of the toad, Bombina variegate (Mollay et al., 1999). All three homologs stimulate gastrointestinal motility thus accounting for their family name "prokineticins" (Schweitz et al., 1990, 1999). However, since its initial description, both PROK1 and PROK2 have been found to regulate a dazzling array of biological functions throughout the body. In particular, PROK1 acts as a potent angiogenic mitogen on endocrine vascular epithelium, thus earning its other name, Endocrine gland-vascular endothelial factor (EG-VEGF) (LeCouter et al., 2002). In contrast, the PROK2 signaling pathway is a critical regulator of olfactory bulb morphogenesis and sexual maturation in mammals and this function is the focus of this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandin E-2 (PGE(2)) promotes angiogenesis by in part inducing endothelial cell survival and migration. The present study examined the role of mTOR and its two complexes, mTORC1 and mTORC2, in PGE(2)-mediated endothelial cell responses. We used small interfering RNA (siRNA) to raptor or rictor to block mTORC1 or mTORC2, respectively. We observed that down-regulation of mTORC2 but not mTORC1 reduced baseline and PGE(2)-induced endothelial cell survival and migration. At the molecular level, we found that knockdown of mTORC2 inhibited PGE2-mediated Rac and Akt activation two important signaling intermediaries in endothelial cell migration and survival, respectively. In addition, inhibition of mTORC2 by prolonged exposure of endothelial cells to rapamycin also prevented PGE2-mediated endothelial cell survival and migration confirming the results obtained with the siRNA approach. Taken together these results show that mTORC2 but not mTORC1 is an important signaling intermediary in PGE2-mediated endothelial cell responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cardiac stem cells have been isolated based on stem cell surface markers, no single marker is stem cell-specific. Clonogenicity is a defining functional property of stemness. We therefore analyzed cardiac cell clones derived from human hearts.Methods: Clonogenic cells were derived from adult human atrial samples. Cells were either cultured in the absence of an initial marker selection or, in separate experiments, they were initially selected for c-kit (CD117), CD31 or CD164 by magnetic immunobeads, or for high aldehyde dehydrogenase activity (ALDH) by FACS. High ALDH activity has been linked to stem/progenitor cells in several tissues. Surface marker analysis was performed by flow cytometry. Cultured cells were also exposed to different factors that modulate cell differentiation, including Dikkopf-1, Noggin, and Wnt-5.Results: Clonogenic cells mainly showed fibroblast-like morphology, ability to grow for more than 30 passages in vitro, and a heterogeneous marker profile even in clones derived from the same cardiac sample. The predominant phenotype was positive for CD13, CD29, CD31, CD44, CD54, CD105 and CD146, but negative for CD10, CD11b, CD14, CD15, CD34, CD38, CD45, CD56, CD106, CD117, CD123, CD133, CD135 and CD271, primarily consistent with endothelial/vascular progenitor cells. However, a minority of clones showed a different profile characterized by expression of CD90, CD106 and CD318, but not CD31 and CD146, consistent with mesenchymal stem/progenitor cells. When initial cell selection was performed, both phenotypes were observed, similarly to unselected cells, irrespective of the selection marker used. Of note, CD117+ sorted cell clones were CD117-negative in culture. Regardless of the immunophenotype, several clones were able to form spheric cell aggregates (cardiospheres), a distinct stem cell property. Dikkopf-1 induced marked CD15 and CD106 upregulation, consistent with stromal differentiation; this effect was prevented by Noggin.Conclusions: The adult human heart contains clonogenic stem/progenitor cells that can be expanded for many passages and form cardiospheres. The surface marker profile of these cells is heterogeneous, consistent with a majority of clones being comprised of endothelial or vascular progenitor cells and a minority of clones consisting of mesenchymal stem/progenitor cells. Dikkopf-1 and Noggin showed opposing effects on stromal differentiation of human cardiac cell clones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10(-24)), CYP1A2 (P = 1 × 10(-23)), FGF5 (P = 1 × 10(-21)), SH2B3 (P = 3 × 10(-18)), MTHFR (P = 2 × 10(-13)), c10orf107 (P = 1 × 10(-9)), ZNF652 (P = 5 × 10(-9)) and PLCD3 (P = 1 × 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.