962 resultados para Factor-i Receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The active fragment derived from factor XII (factor XIIf) was purified from human plasma and administered intravenously to normotensive conscious rats. Factor XIIf-mediated hypotension was dose-dependent and augmented by pretreatment with captopril, an inhibitor of the angiotensin I- and bradykinin-processing enzyme. In contrast, factor XIIf-induced hypotension was not enhanced by blockade of the renin-angiotensin system by saralasin, a competitive antagonist of angiotensin II at the vascular receptor level. These results suggest that factor XIIf-mediated hypotension is due to the formation of bradykinin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome proliferator activated receptor-γ (PPARγ), a transcription factor of the nuclear receptor superfamily plays a significant role in colorectal cancer pathogenesis. In most experimental systems PPARγ activation has tumor suppressing effects in the colon. PPARγ is regulated at multiple levels by the ubiquitin-proteasome system (UPS). At a first level, UPS regulates PPARγ transcription. This regulation involves both PPARγ transcription specific factors and the general transcription machinery. At a second level UPS regulates PPARγ and its co-factors themselves, as PPARγ and many co-factors are proteasome substrates. At a third level of regulation, transduction pathways working in parallel but also having interrelations with PPARγ are regulated by the UPS, creating a network of regulation in the colorectal carcinogenesis-related pathways that are under UPS control. Activation of PPARγ transcription by direct pharmacologic activators and by stabilization of its molecule by proteasome inhibitors could be strategies to be exploited in colorectal cancer treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Juvenile dermatomyositis (DM) is a systemic autoimmune disorder of unknown immunopathogenesis in which the immune system targets the microvasculature of skeletal muscles, skin, and other organs. The current mainstay of therapy is a steroid regimen in combination with other immunosuppressive treatments. To date, no validated markers for monitoring disease activity have been identified, which hampers personalized treatment. This study was undertaken to identify a panel of proteins specifically related to active disease in juvenile DM. METHODS: We performed a multiplex immunoassay for plasma levels of 45 proteins related to inflammation in 25 patients with juvenile DM in 4 clinically well-defined groups, as determined by clinical activity and treatment. We compared them to 14 age-matched healthy children and 8 age-matched children with nonautoimmune muscle disease. RESULTS: Cluster analysis of circulating proteins showed distinct profiles for juvenile DM patients and controls based on a group of 10 proteins. In addition to CXCL10, tumor necrosis factor receptor type II (TNFRII) and galectin 9 were significantly increased in active juvenile DM. The levels of these 3 proteins were tightly linked to active disease and correlated with clinical scores (as measured by the Childhood Myositis Assessment Scale and physician's global assessment of disease activity on a visual analog scale). CONCLUSION: Our findings indicate that CXCL10, TNFRII, and galectin 9 correspond to disease status in juvenile DM and thus could be helpful in monitoring disease activity and guiding treatment. Furthermore, they might provide new knowledge about the pathogenesis of this autoimmune disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oligomeric state of BAFF (B cell activing factor), a tumor necrosis factor (TNF) family cytokine that plays a critical role in B cell development and survival, has been the subject of recent debate. Myc-tagged BAFF starting at residue Gln136 was previously reported to crystallize as trimers at pH 4.5, whereas a histidine-tagged construct of BAFF, starting at residue Ala134, formed a virus-like cluster containing 60 monomers when crystallized at pH 9.0. The formation of the BAFF 60-mer was pH dependent, requiring pH >or= 7.0. More recently, 60-mer formation was suggested to be artificially induced by the histidine tag, and it was proposed that BAFF, like all other TNF family members, is trimeric. We report here that a construct of BAFF with no amino-terminal tag (Ala134-BAFF) can form a 60-mer in solution. Using size exclusion chromatography and static light scattering to monitor trimer to 60-mer ratios in BAFF preparations, we find that 60-mer formation is pH-dependent and requires histidine 218 within the DE loop of BAFF. Biacore measurements established that the affinity of Ala134-BAFF for the BAFF receptor BAFFR/BR3 is similar to that of myc-Gln136-BAFF, which is exclusively trimeric in solution. However, Ala134-BAFF is more efficacious than myc-Gln136-BAFF in inducing B cell proliferation in vitro. We additionally show that BAFF that is processed and secreted by 293T cells transfected with full-length BAFF, or by a histiocytic lymphoma cell line (U937) that expresses BAFF endogenously, forms a pH-dependent 60-mer in solution. Our results indicate that the formation of the 60-mer in solution by the BAFF extracellular domain is an intrinsic property of the protein, and therefore that this more active form of BAFF may be physiologically relevant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, is expressed in T lymphocytes, and exerts an anti-apoptotic function in these cells. We reported that GITR is also highly expressed in the skin, specifically in keratinocytes, and that it is under negative transcriptional control of p21(Cip1/WAF1), independently from the cell cycle. Although GITR expression is higher in p21-deficient keratinocytes and skin, it is down-modulated with differentiation and in response to UVB. The combined analysis of keratinocytes with increased GITR expression versus normal keratinocytes and skin of mice with a disruption of the GITR gene indicates that this protein protects keratinocytes from UVB-induced apoptosis both in vitro and in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract : The female reproductive hormones estrogen, progesterone and prolactin control postnatal breast development and are important to breast carcinogenesis. The mechanisms by which they elicit proliferation and morphogenesis remain poorly understood. Using the mouse as a model to study the molecular mechanisms through which hormones elicit morphogenetic changes in the mammary gland in vivo, we found the Receptor Activator of NFκB Ligand, a Tumor Necrosis Factor family member, to be strongly induced by progesterone. Recent publications suggested that hormone dependant RANKURANK signals are involved in the terminal differentiation of mammary gland alveolar buds into lobulo-alveolar structures competent for lactation. I show that in the absence of epithelial RANKL a distinct earlier stage of mammary gland development, side branch formation, is blocked. RANKL acts as a major mediator downstream of progesterone; it is required for progesterone-induced paracrine proliferation and completely rescues the mutant phenotype when ectopically expressed in progesterone receptor (PR) KO mammary epithelia. RANKL is not required for cell autonomous division of estrogen receptor alpha (ERa) /PR positive cells. Cyclin D1, previously implicated as a mediator of RANKL, is not affected by ablation of RANKL and is not required for RANKL-induced paracrine proliferation but for the cell autonomous proliferation. Gene expression arrays to find specific RANKL downstream targets have identified Id4, ElfS and one secreted metalloprotease (Adamtsl8) as potential candidates validated by Q-RT-PCR. Interestingly, Id4 and Adamtsl8 are expressed by the myoepithelial cells. Their expression additionally coincides with RANKL mRNA expression at mid pregnancy, possibly implying a functional contribution of both genes to RANKL mediated sidebranch formation. ElfS in contrast, is found to be strongly expressed by the end of pregnancy supporting recent findings of a prolactin mediated regulation. As for RANKL, this gene was in particular induced in luminal cells. Taken together, I report that progesterone is the major proliferative stimulus in the adult mammary gland eliciting proliferation of ERaJPR positive cells by a cell autonomous, cyclin D1-dependent and a paracrine RANKL-dependent mechanism. My work moreover suggests, that RANKL acts as a major orchestrator affecting different downstream mediators, through which progesterone exerts its effects concomitantly on different cellular compartments. Résumé : Les hormones sexuelles telles que l'oestrogène, la progestérone et la prolactine contrôlent le développement postnatal du sein et sont impliquées dans la cazcinogenèse. Les mécanismes par lesquels elles induisent la prolifération et la morphogénèse demeurent incompris. En utilisant la souris comme modèle, J'ai trouvé que le ligand activateur du récepteur de NFκB, une protéine de la famille du facteur de nécrose des tumeurs, peut être fortement induit par la progestérone. Les publications récentes ont suggéré que cette protéine est nécessaire à la fin de la grossesse, quand les cellules sécrétrices du lait apparaissent. Par des techniques de transplantation d'épithélium, je montre contrairement aux études précédentes, qu'en l'absence de RANKL dans l'épithélium une partie distincte du développement mammaire, la formation de branches latérales, est bloquée. La progestérone agit de manière pazacrine par l'intermédiaire de 12ANKL pour induire la prolifération tandis que la mort cellulaire n'est pas affectée. De plus, l'injection d'une protéine recombinante RANKL dans une souris mutante pour le récepteur à la progestérone induit la prolifération des cellules épithéliales en l'absence de grossesse ; la surexpression de RANKL dans ces mêmes mutants mène à une réversion complète du phénotype. Mes expériences démontrent que la progestérone induit deux types distincts de prolifération. Un premier type direct dans laquelle les cellules positives au récepteur à la progestérone prolifèrent. Cette division cellulaire est alors indépendante de RANKL mais dépendante de la cycline D1. Le second type de prolifération est induit par un mécanisme pazacrine et dépend de RANKL mais pas de la cycline D1. Ici, les cellules négatives au récepteur à la progestérone prolifèrent. Pour détecter des gènes cibles de la voie de signalisation du RANKL, un profil d'expression des gènes a été généré. Les facteurs de transcription Id4, EIf5 et une métalloprotéase sécrétée (Adamtsl8) ont été identifiés en tant que cibles potentielles. D'autres analyses de validation démontrent qu'Id4, Adamtsl8, RANKL mais pas E1f5 sont fortement exprimés au cours de la grossesse, coïncidant avec la formation de branchements latéraux induit par progestérone. EIf5 s'est avéré être exprimé vers la fin de la grossesse appuyant des résultats récents proposant une régulation par la prolactine. Le système canalaire mammaire se compose de couches cellulaires: une couche interne de cellules luminales et une externe de cellules myoépithéliale. Les expériences génétiques d'expression ont révélé que RANKL. et E1f5 sont exprimés dans la partie luminale tandis qu'Id4 et Adamtsl8 sont dans les cellules myoépithéliales. En conclusion, je prouve que la progestérone est le stimulus principal induisant la prolifération dans la glande mammaire d'adulte. Deux mécanismes de prolifération sont impliqués: l'un direct dépendant de la cycline Dl et l'autre paracrine dépendant de RANKI.. Mon travail suggère par ailleurs que RANKL agit en tant que médiateur important, par lequel la progestérone exerce ses effets sur différents compartiments cellulaires tels que la coordination de la prolifération des cellules épithéliales avec la réorganisation de la matrice extracellulaire et de la membrane basale exigées pour la morphogénèse du système canalaire latéral.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) molecules are of crucial importance for the immune system to recognize and defend the body against external attacks. Foreign antigens are presented by specialized cells, called antigen presenting cells, to T lymphocytes in the context of MHC molecules, thereby inducing T cell activation. In addition, MHC molecules are essential for Natural Killer (NK) cell biology, playing a role in NK cell education and activation. Recently, the NOD-like receptor (NLR) family member NLRC5 (NLR caspase recruitment domain containing protein 5) was found to act as transcriptional regulator of MHC class I, in particular in T and NK cells. Its role in MHC class I expression is however minor in dendritic cells (DCs). This raised the question of whether inflammatory conditions, which augment the levels of NLRC5 in DCs, could increase its contribution to MHC class I expression. Our work shows that MHC class I transcript and intracellular levels depend on NLRC5, while its role in MHC class I surface expression is instead negligible. We describe however a general salvage mechanism that enables cells with low intracellular MHC class I levels to nevertheless maintain relatively high MHC class I on the cell surface. In addition, we lack a thorough understanding of NLRC5 target gene specificity and mechanism of action. Our work delineates the unique consensus sequence in MHC class I promoters required for NLRC5 recruitment and pinpoints conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHC class I genes and identify novel target genes all encoding non-classical MHC class I molecules exerting an array of functions in immunity and tolerance. We finally asked why a dedicated factor co-regulates MHC class I expression specifically in T and NK lymphocytes. We show that deregulated NLRC5 expression affects the education of NK cells and alters the crosstalk between T and NK cells, leading to NK cell-mediated killing of T lymphocytes. Altogether this thesis work brings insights into molecular and physiological aspects of NLRC5 function, which might help understand certain aspects of immune responses and disorders. -- Les molécules du complexe majeur d'histocompatibilité (CMH) sont essentielles au système immunitaire pour l'initiation de la réponse immunitaire. En effet, l'activation des lymphocytes T nécessite la reconnaissance d'un antigène étranger présenté par les cellules présentatrices d'antigènes sur une molécule du CMH. Les molécules du CMH ont également un rôle fondamental pour la fonction des cellules Natural Killer (NK) puisqu'elles sont nécessaires à leur processus d'éducation et d'activation. Récemment, NLRC5 (NLR caspase recruitment domain containing protein 5), un membre de la famille des récepteurs de type NOD (NLRs), a été décrit comme un facteur de transactivation de l'expression des gènes du CMH de classe I. A l'état basai, cette fonction transcriptionnelle est essentielle dans les lymphocytes T et NK, alors que ce rôle reste mineur pour l'expression des molécules du CMH de classe I dans les cellules dendritiques (DCs). Dans des conditions inflammatoires, l'expression de NLRC5 augmente dans les DCs. Notre travail démontre que, dans ces conditions, les transcrits et les niveaux intracellulaires des molécules du CMH de classe I augmentent aussi d'une façon dépendante de NLRC5. A contrario, le rôle de NLRC5 sur les niveaux de molécules de surface reste minoritaire. Cette observation nous a conduits à l'identification d'un mécanisme général de compensation qui permet aux cellules de maintenir des niveaux relativement élevés de molécules de CMH de class I à leur surface malgré de faibles niveaux intracellulaires. De plus, il semblait nécessaire de s'orienter vers une approche plus globale afin de déterminer l'étendue de la fonction transcriptionnelle de NLRC5. Par une approche du génome entier, nous avons pu décrire une séquence consensus conservée présente dans les promoteurs des gènes du CMH de classe I, sur laquelle NLRC5 est spécifiquement recruté. Nous avons pu également identifier de nouveaux gènes cibles codant pour des molécules de CMH de classe I non classiques impliqués dans l'immunité et la tolérance. Finalement, nous nous sommes demandé quel est l'intérêt d'avoir un facteur transcriptionnel, en l'occurrence NLRC5, qui orchestre l'expression du CMH de classe I dans les lymphocytes T et NK. Nous montrons que la dérégulation de l'expression de NLRC5 affecte l'éducation des cellules NK et conduit à la mort cellulaire des lymphocytes T médiée par les cellules NK. Dans l'ensemble ce travail de thèse contribue à la caractérisation du rôle de NLRC5, tant au niveau moléculaire que physiologique, ce qui présente un intérêt dans le cadre de la compréhension de certains aspects physiopathologique de la réponse immunitaire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the TCF/LEF (T cell factor / lymphoid enhancer factor) family of DNA-binding factors play important roles during embryogenesis, the establishment and/or maintenance of self-renewing tissues such as the immune system and for malignant transformation. Specifically, it has been shown that TCF-1 is required for T cell development. A role for LEF-1 became apparent when mice harbored two hypomorphic TCF-1 alleles and consequently expressed low levels of TCF-1. Here we show that NK cell development is similarly regulated by redundant functions of TCF-1 and LEF-1, whereby TCF-1 contributes significantly more to NK cell development than LEF-1. Despite this role for NK cell development, LEF-1 is not required for the establishment of a repertoire of MHC class I-specific Ly49 receptors on NK cells. The proper formation of this repertoire depends to a large extent on TCF-1. These findings suggest common and distinct functions of TCF-1 and LEF-1 during lymphocyte development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.