885 resultados para FEC using Reed-Solomon and Tornado codes
Resumo:
BACKGROUND: Involuntary job loss is a major life event associated with social, economic, behavioural, and health outcomes, for which older workers are at elevated risk. OBJECTIVE: To assess the 10 year risk of myocardial infarction (MI) and stroke associated with involuntary job loss among workers over 50 years of age. METHODS: Analysing data from the nationally representative US Health and Retirement Survey (HRS), Cox proportional hazards analysis was used to estimate whether workers who suffered involuntary job loss were at higher risk for subsequent MI and stroke than individuals who continued to work. The sample included 4301 individuals who were employed at the 1992 study baseline. RESULTS: Over the 10 year study frame, 582 individuals (13.5% of the sample) experienced involuntary job loss. After controlling for established predictors of the outcomes, displaced workers had a more than twofold increase in the risk of subsequent MI (hazard ratio (HR) = 2.48; 95% confidence interval (CI) = 1.49 to 4.14) and stroke (HR = 2.43; 95% CI = 1.18 to 4.98) relative to working persons. CONCLUSION: Results suggest that the true costs of late career unemployment exceed financial deprivation, and include substantial health consequences. Physicians who treat individuals who lose jobs as they near retirement should consider the loss of employment a potential risk factor for adverse vascular health changes. Policy makers and programme planners should also be aware of the risks of job loss, so that programmatic interventions can be designed and implemented to ease the multiple burdens of joblessness.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.
Resumo:
There is an increasing demand for DNA analysis because of the sensitivity of the method and the ability to uniquely identify and distinguish individuals with a high degree of certainty. But this demand has led to huge backlogs in evidence lockers since the current DNA extraction protocols require long processing time. The DNA analysis procedure becomes more complicated when analyzing sexual assault casework samples where the evidence contains more than one contributor. Additional processing to separate different cell types in order to simplify the final data interpretation further contributes to the existing cumbersome protocols. The goal of the present project is to develop a rapid and efficient extraction method that permits selective digestion of mixtures. Selective recovery of male DNA was achieved with as little as 15 minutes lysis time upon exposure to high pressure under alkaline conditions. Pressure cycling technology (PCT) is carried out in a barocycler that has a small footprint and is semi-automated. Typically less than 10% male DNA is recovered using the standard extraction protocol for rape kits, almost seven times more male DNA was recovered from swabs using this novel method. Various parameters including instrument setting and buffer composition were optimized to achieve selective recovery of sperm DNA. Some developmental validation studies were also done to determine the efficiency of this method in processing samples exposed to various conditions that can affect the quality of the extraction and the final DNA profile. Easy to use interface, minimal manual interference and the ability to achieve high yields with simple reagents in a relatively short time make this an ideal method for potential application in analyzing sexual assault samples.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
Synthesis of Polyhydroxyalkanoates (PHAs) by Pseudomonas mendocina, using different vegetable oils such as, coconut oil, groundnut oil, corn oil and olive oil, as the sole carbon source was investigated for the first time. The PHA yield obtained was compared with that obtained during the production of PHAs using sodium octanoate as the sole carbon source. The fermentation profiles at shaken flask and bioreactor levels revealed that vegetable oils supported the growth of Pseudomonas mendocina and PHA accumulation in this organism. Moreover, when vegetable oil (coconut oil) was used as the sole carbon source, fermentation profiles showed better growth and polymer production as compared to conditions when sodium octanoate was used as the carbon source. In addition, comparison of PHA accumulation at shaken flask and fermenter level confirmed the higher PHA yield at shaken flask level production. The highest cell mass found using sodium octanoate was 1.8 g/L, whereas cell mass as high as 5.1 g/L was observed when coconut oil was used as the feedstock at flask level production. Moreover, the maximum PHA yield of 60.5% dry cell weight (dcw) was achieved at shaken flask level using coconut oil as compared to the PHA yield of 35.1% dcw obtained using sodium octanoate as the sole carbon source. Characterisations of the chemical, physical, mechanical, surface and biocompatibility properties of the polymers produced have been carried out by performing different analyses as described in the second chapter of this study. Chemical analysis using GC and FTIR investigations showed medium chain length (MCL) PHA production in all conditions. GC-MS analysis revealed a unique terpolymer production, containing 3-hydroxyoctanoic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic acid when coconut oil, groundnut oil, olive oil, and corn oil were used as the carbon source. Whereas production of the homopolymer containing 3-hydroxyoctanoic acid was observed when sodium octanoate was used as the carbon source. MCL-PHAs produced in this study using sodium octanoate, coconut oil, and olive oil exhibited melting transitions, indicating that each of the PHA was crystalline or semi-crystalline polymer. In contrast, the thermal properties of PHAs produced from groundnut and corn oils showed no melting transition, indicating that they were completely amorphous or semi-crystalline, which was also confirmed by the X-Ray Diffraction (XRD) results obtained in this study. Mechanical analysis of the polymers produced showed higher stiffness of the polymer produced from coconut oil than the polymer from sodium octanoate. Surface characterisation of the polymers using Scanning Electron Microscopy (SEM) revealed a rough surface topography and surface contact angle measurement revealed their hydrophobic nature. Moreover, to investigate the potential applicability of the produced polymers as the scaffold materials for dental pulp regeneration, multipotent human Mesenchymal stem cells (hMSCs) were cultured onto the polymer films. Results indicated that these polymers are not cytotoxic towards the hMSCs and could support their attachment and proliferation. Highest cell growth was observed on the polymer samples produced from corn oil, followed by the polymer produced using coconut oil. In conclusion, this work established, for the first time, that vegetable oils are a good economical source of carbon for production of MCL-PHA copolymers effectively by Pseudomonas mendocina. Moreover, biocompatibility studies suggest that the produced polymers may have potential for dental tissue engineering application.
Resumo:
Chromatin immunoprecipitation (ChIP) provides a means of enriching DNA associated with transcription factors, histone modifications, and indeed any other proteins for which suitably characterized antibodies are available. Over the years, sequence detection has progressed from quantitative real-time PCR and Southern blotting to microarrays (ChIP-chip) and now high-throughput sequencing (ChIP-seq). This progression has vastly increased the sequence coverage and data volumes generated. This in turn has enabled informaticians to predict the identity of multi-protein complexes on DNA based on the overrepresentation of sequence motifs in DNA enriched by ChIP with a single antibody against a single protein. In the course of the development of high-throughput sequencing, little has changed in the ChIP methodology until recently. In the last three years, a number of modifications have been made to the ChIP protocol with the goal of enhancing the sensitivity of the method and further reducing the levels of nonspecific background sequences in ChIPped samples. In this chapter, we provide a brief commentary on these methodological changes and describe a detailed ChIP-exo method able to generate narrower peaks and greater peak coverage from ChIPped material.
Resumo:
This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.
Resumo:
This talk explores how the runtime system and operating system can leverage metrics that express the significance and resilience of application components in order to reduce the energy footprint of parallel applications. We will explore in particular how software can tolerate and indeed exploit higher error rates in future processors and memory technologies that may operate outside their safe margins.
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.
Resumo:
The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.
Resumo:
This Licentiate Thesis is devoted to the presentation and discussion of some new contributions in applied mathematics directed towards scientific computing in sports engineering. It considers inverse problems of biomechanical simulations with rigid body musculoskeletal systems especially in cross-country skiing. This is a contrast to the main research on cross-country skiing biomechanics, which is based mainly on experimental testing alone. The thesis consists of an introduction and five papers. The introduction motivates the context of the papers and puts them into a more general framework. Two papers (D and E) consider studies of real questions in cross-country skiing, which are modelled and simulated. The results give some interesting indications, concerning these challenging questions, which can be used as a basis for further research. However, the measurements are not accurate enough to give the final answers. Paper C is a simulation study which is more extensive than paper D and E, and is compared to electromyography measurements in the literature. Validation in biomechanical simulations is difficult and reducing mathematical errors is one way of reaching closer to more realistic results. Paper A examines well-posedness for forward dynamics with full muscle dynamics. Moreover, paper B is a technical report which describes the problem formulation and mathematical models and simulation from paper A in more detail. Our new modelling together with the simulations enable new possibilities. This is similar to simulations of applications in other engineering fields, and need in the same way be handled with care in order to achieve reliable results. The results in this thesis indicate that it can be very useful to use mathematical modelling and numerical simulations when describing cross-country skiing biomechanics. Hence, this thesis contributes to the possibility of beginning to use and develop such modelling and simulation techniques also in this context.
Resumo:
[EN]An active vision system to perform tracking of moving objects in real time is described. The main goal is to obtain a system integrating off-the-self components. These components includes a stereoscopic robotic-head, as active perception hardware; a DSP based board SDB C80, as massive data processor and image acquisition board; and finally, a Pentium PC running Windows NT that interconnects and manages the whole system. Real-time is achieved taking advantage of the special architecture of DSP. An evaluation of the performance is included.