991 resultados para FE Method
Resumo:
Seismic analysis, horizon matching, fault tracking, marked point process,stochastic annealing
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2009
Resumo:
Young coffee plants (Coffea arabica L., var. Mundo Novo) were grown in nutrient solution purified from micronutrients contaminants by the method of MUNNS & JOHNSON (1960). All plants, except those in the control treatment, wer given all macronutrients and all micronutrients except one which was omitted in order to induce its shortage. Symptoms of deficiency were obtained for all known micronutrients but chlorine. Measurements, observations and chemical analysis of leaves allowed the following main conclusions to be drawn. 1. The relative influence of micronutrients in growth-measured by the fresh weight of the entire plant - was as follows: -Fe -Zn -Cu -Mo -Mn complete = -B = -CI. that is: the omission of iron from the nutrient solution caused the severest reduction in growth; lack of B and Cl had no effect. 2. Symptoms of deficiency of B, Fe, Mn, and Zn were found to be in good agreement with those in the literature. Effects of Cu and Mo shortage, however, had not been described so far: In the case of the Cu-deficient plants, the younger leaves were distorted, having an "S" shape, due probably to lack of growth of the veins; they lost their green color and developed rather large, necrotic patches near the margins. When molybdenum was omitted from the nutrient solution yellow spots develop near the margen of subterminal (fully mature) leaves; they became necrotic; there was a characteristic downward curling of the leaf blade along the mid rib so that the opposite edges touched each other underneath. 3. The levels of micronutrients found in normal and deficient leaves are given in Table 4. It is hoped that those values will serve as a basis of judgement of micronutrient contents found in leaves of field grown plants.
Resumo:
WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.
Resumo:
1. Quanto às características morfológicas, as domácias nas folhas tratadas não apresentaram diferenças apreciáveis, a não ser quanto à forma do orifício de entrada ou bôca, que ora é circular, ora é eliptico. Foram assinalados pelos nas adjacências da domácia. 2. Sob o ponto de vista anatômico, anotei na estrutura pequenas alterações na epiderme que reveste o interior da câmara e canal, constando de diferenças quanto ao tamanho, uniformidade, grau de cutinização e aspectos diversos nas- paredes externas das células. O tecido envolvente apresentou variações no número de camadas e na forma irregular de suas células.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014
Resumo:
[s.c.]
Resumo:
Este estudo foi feito com a finalidade de verificar a influência do Mn sobre as concentrações de P, Ca, Mg, Mn, Zn e Cu das partes aéreas e Ca, Fe e Mn das raízes, bem como detectar possíveis relações entre as concentrações dos elementos determinados em ambos os órgãos com o grau de tolerância ao Mn dos cultivares. Concluiu-se que o grau de tolerância ao Mn não está relacionado com as concentrações de P, Ca, Mg, Fe, Mn, Zn e Cu das partes aéreas e Ca, Fe e Mn das raízes e que as concentrações dos elementos determinados em ambos os órgãos se comportam diferentemente em função das concentrações de Mn na solução.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015
Resumo:
Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.
Resumo:
Com o propósito de comparar os efeitos de doses crescentes de Al sobre a concentração e acúmulo de Fe, Mn e Zn conduziu-se um experimento usando-se separadamente solução nutritiva usada por BOLLE-JONES e soluções de doses de Al que consistiram de 0, 5, 10, 15 20 e 25ppm, em que as plantas passaram vinte e quatro horas na solução nutritiva (sem Al) e vinte e quatro horas nas soluções de Al. Após noventa e cinco dias de tratamento as plantas foram coletadas e separadas em raiz, caule, folhas dos verticilos inferiores e folhas do último verticilo. Determinou-se as concentrações de Fe, Mn e Zn no material coletado. Observou-se que o Al estimula a concentração de Fe e Mn em todos os níveis de Al enquanto que o acúmulo desses micronutrientes é afetado a partir de 20ppm de Al na solução. A concentração de Zn na raiz e folhas do último verticilo é afetado a partir de 15ppm de Al na solução e o acúmulo deste nutriente é afetado a partir de 20ppm de Al na solução.
Resumo:
Em uma plantação de cafeeiros (Coffea arabica cv. Catuai) com dois, três, quatro e cinco anos de idade no campo, situada em Latossolo Vermelho Amarelo, fase cerrado no município de Salto, SP, determinou-se o recrutamento de micronutrientes no caule, ramos, folhas e frutos, durante as fases fenológicas de repouso, granaçao e maturação. Concluiu-se que: A maior acumulação de cobre, manganês e zinco ocorre nos meses de julho, janeiro e junho em cafeeiros com cinco anos de idade. A acumulação de boro e ferro varia em função das épocas. Em janeiro e junho o acúmulo de ferro nao mostrou diferenças entre as idades. O cafeeiro aos cinco anos de campo exporta através da colheita, em função do conteúdo total da planta 30% de B, 46% de Cu, 26% de Fe, 14% de Mn e 25% de Zn.
Resumo:
v.72:no.1(1977)