962 resultados para FCE LTER Mid-term Review
Resumo:
We produced a landscape scale map of mean tree height in mangrove forests in Everglades National Park (ENP) using the elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM data was calibrated using airborne lidar data and a high resolution USGS digital elevation model (DEM). The resulting mangrove height map has a mean tree height error of 2.0 m (RMSE) over a pixel of 30 m. In addition, we used field data to derive a relationship between mean forest stand height and biomass in order to map the spatial distribution of standing biomass of mangroves for the entire National Park. The estimation showed that most of the mangrove standing biomass in the ENP resides in intermediate- height mangrove stands around 8 m. We estimated the total mangrove standing biomass in ENP to be 5.6 X 109 kg.
Resumo:
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.
Resumo:
The reactivity of higher plant derived 3-oxy-triterpenoids to sunlight was investigated using a series of pure reference standards both under simulated and real solar exposure. The majority of the exposed compounds showed reactivity to light, particularly to simulated sunlight and among others generated seco-derivatives. While photochemical processes have been suggested for the formation of such compounds, their abundances in some sediments have often been assumed to be the result of diagenetic reworking of parent triterpenoids. Analyses of mangrove leaf waxes, an important known source of taraxerol in coastal ecosystems, showed the presence of the 3,4-seco-derivative dihydrolacunosic acid, which could represent an important biotic source for des-A-triterpenoid precursors to such sediments, and is unrelated to aquatic organic matter diagenesis.
Resumo:
In the Everglades, the majority of fish detrital inputs occur during the dry scason, when waterlevel drawdown reduces aquatic habitat. While these mortality events are highly seasonal, the remineralization and recycling of fish detrital nutrients may represent an important stimulus to the ecosystem in the following wet season. The goal of this study was to quantify the rate of detrital fish decomposition during three periods of the year to determine seasonal variations in decomposition patterns in this ecosystem. A multiple regression analysis showed that hydroperiod and water depth both played a role in determining fish decomposition rates within this ecosystem. Decomposition rates ranged from a low of 13% day−1 in December 2000 to a high of 50% day−1 in April 2001, the height of the dry season. Phosphorus analysis showed that Gambusia holbrooki, the dominant small fish species in the Everglades, contains 7.169±1.46 mg P g−1 wet fish weight. Based on the observed decomposition rates and the average biomass added, the estimafed daily flux of phosphorus from the experimental detrital loading ranged from a low of 27.04 mg P day−1 to a high of 108.14 mg P day−1 during the decomposition period. We estimated that these inputs could represent an input of 43 μg P m−2 day−1 to the total temporal Everglades phosphorus budget. Although much of this phosphorus is likely incorporated into the macroinvertebrate pool, detrital inputs peak during the dry season when nutrients are most likely to be incorporated into the soil and occur when decomposition of vegetative material is moisture-limited. These inputs may therefore play an important role in stimulating vegetative production during the early wet season.
Resumo:
Oxygen atoms within fossil wood provide high-resolution records of climate change, particularly for the Quaternary. However, current analysis methods of fossil cellulose do not differentiate between different positions of the oxygen atoms. Here, we propose a refinement to tree-cellulose paleoclimatology modeling, using the cellulose-derived compound phenylglucosazone as the isotopic substrate. Stem samples from trees were collected at northern latitudes as low as 24°37′N and as high as 69°00′N. We extracted stem water and cellulose from each stem sample and analyzed them for their 18O content. In addition, we derived the cellulose to phenylglucosazone, a compound which lacks the oxygen attached to the second carbon of the cellulose–glucose moieties. Oxygen isotope analysis of phenylglucosazone allowed us to calculate the 18O content of the oxygen attached to the second carbon of the cellulose–glucose moieties. By way of these analyses, we tested two hypotheses: first, that the 18O content of the oxygen attached to second carbon will more closely reflect the 18O content of the stem water, and will not resemble the 18O content of either cellulose or its derivative phenylglucosazone. Second, tree-ring models that incorporate the variable oxygen isotope fractionation shown here and elsewhere are more accurate than those that do not. Our first hypothesis was rejected on the basis that the oxygen isotope ratios of the oxygen attached to the second carbon of the glucose moieties had a noisy isotopic signal with a large standard deviation and gave the poorest correlation with the oxygen isotope ratios of stem water. Related to this isotopic noise, we observed that the correlation between oxygen isotope ratios of phenylglucosazone with both stem water and relative humidity were higher than those observed for cellulose. Our hypothesis about tree-ring models which account for changes in the oxygen isotopic fractionation during cellulose synthesis was consistent only for the 18O content of phenylglucosazone. We showed that the tree-ring model based on the 18O content of phenylglucosazone was an improvement over existing models that are based on whole cellulose. Additionally, this approach may be used in other cellulose based archives such as peat deposits and lacustrine sediments.
Resumo:
The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3–6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Significant improvements have been made in estimating gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) from diel, “free-water” changes in dissolved oxygen (DO). Here we evaluate some of the assumptions and uncertainties that are still embedded in the technique and provide guidelines on how to estimate reliable metabolic rates from high-frequency sonde data. True whole-system estimates are often not obtained because measurements reflect an unknown zone of influence which varies over space and time. A minimum logging frequency of 30 min was sufficient to capture metabolism at the daily time scale. Higher sampling frequencies capture additional pattern in the DO data, primarily related to physical mixing. Causes behind the often large daily variability are discussed and evaluated for an oligotrophic and a eutrophic lake. Despite a 3-fold higher day-to-day variability in absolute GPP rates in the eutrophic lake, both lakes required at least 3 sonde days per week for GPP estimates to be within 20% of the weekly average. A sensitivity analysis evaluated uncertainties associated with DO measurements, piston velocity (k), and the assumption that daytime R equals nighttime R. In low productivity lakes, uncertainty in DO measurements and piston velocity strongly impacts R but has no effect on GPP or NEP. Lack of accounting for higher R during the day underestimates R and GPP but has no effect on NEP. We finally provide suggestions for future research to improve the technique.
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh
Resumo:
Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.
Resumo:
Located at a subtropical latitude, the expansive Florida Everglades contains a mixture of tropical and temperate diatom taxa, as well as a unique flora adapted to the calcareous, often excessively hot, seasonally flooded wetland conditions. This flora has been poorly documented taxonomically, although diatoms are recognized as important indicators of environmental change in this threatened ecosystem. Gomphonema is a dominant genus in the freshwater marsh, and is represented by highly variable species complexes, including Gomphonema gracile Ehrenberg, Gomphonema intricatum var. vibrio Ehrenberg sensu Fricke, Gomphonema vibrioides Reichardt & Lange-Bertalot and Gomphonema parvulum (Kützing) Grunow. These taxa have been shown to exhibit wide morphological variation in other regions, resulting in considerable nomenclatural confusion. We collected Gomphonema from 237 sites distributed throughout the freshwater Everglades and used qualitative and quantitative morphological data to identify 20 distinguishable populations. Taxonomie assignments were based on descriptions and/or observations of type material of relevant taxa when possible, but deviations from original morphological range descriptions were common. We then compared morphological variation in Everglades Gomphonema taxa to that reported for the same taxa in other regions and suggest revisions of taxonomie concepts when necessary.
Resumo:
We examined the high-resolution temporal dynamics of recovery of dried periphyton crusts following rapid rehydration in a phosphorus (P)-limited short hydroperiod Everglades wetland. Crusts were incubated in a greenhouse in tubs containing water with no P or exogenous algae to mimic the onset of the wet season in the natural marsh when heavy downpours containing very low P flood the dry wetland. Algal and bacterial productivity were tracked for 20 days and related to compositional changes and P dynamics in the water. A portion of original crusts was also used to determine how much TP could be released if no biotic recovery occurred. Composition was volumetrically dominated by cyanobacteria (90%) containing morphotypes typical of xeric environments. Algal and bacterial production recovered immediately upon rehydration but there was a net TP loss from the crusts to the water in the first 2 days. By day 5, however, cyanobacteria and other bacteria had re-absorbed 90% of the released P. Then, water TP concentration reached a steady-state level of 6.6 μg TP/L despite water TP concentration through evaporation. Phosphomonoesterase (PMEase) activity was very high during the first day after rehydration due to the release of a large pre-existing pool of extracellular PMEase. Thereafter, the activity dropped by 90% and increased gradually from this low level. The fast recovery of desiccated crusts upon rehydration required no exogenous P or allogenous algae/bacteria additions and periphyton largely controlled P concentration in the water.
Resumo:
The effects of shade on benthic calcareous periphyton were tested in a short-hydroperiod oligotrophic subtropical wetland (freshwater Everglades). The experiment was a split-plot design set in three sites with similar environmental characteristics. At each site, eight randomly selected 1-m2 areas were isolated individually in a shade house, which did not spectrally change the incident irradiance but reduced it quantitatively by 0, 30, 50, 60, 70, 80, 90 and 98%. Periphyton mat was sampled monthly under each shade house for a 5 month period while the wetland was flooded. Periphyton was analyzed for thickness, DW, AFDW, chlorophyll a (chl a) and incubated in light and dark BOD bottles at five different irradiances to assess its photosynthesis–irradiance (PI) curve and respiration. The PI curves parameters P max, I k and eventually the photoinhibition slope (β) were determined following non-linear regression analyses. Taxonomic composition and total algal biovolume were determined at the end of the experiment. The periphyton composition did not change with shade but the PI curves were significantly affected by it. I k increased linearly with increasing percent irradiance transmittance (%IT = 1−%shade). P max could be fitted with a PI curve equation as it increased with %IT and leveled off after 10%IT. For each shade level, the PI curve was used to integrate daily photosynthesis for a day of average irradiance. The daily photosynthesis followed a PI curve equation with the same characteristics as P max vs. %IT. Thus, periphyton exhibited a high irradiance plasticity under 0–80% shade but could not keep up the same photosynthetic level at higher shade, causing a decrease in daily GPP at 98% shade levels. The plasticity was linked to an increase in the chl a content per cell in the 60–80% shade, while this increase was not observed at lower shade likely because it was too demanding energetically. Thus, chl a is not a good metric for periphyton biomass assessment across variously shaded habitats. It is also hypothesized that irradiance plasticity is linked to photosynthetic coupling between differently comprised algal layers arranged vertically within periphyton mats that have different PI curves.