927 resultados para FAS-associated death domain protein
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [3]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma (FUS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [4]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation, RNA splicing, mRNA transport in neurons and microRNA processing [5] Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [6]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [7]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [8,9] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently established protocol [10] and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy. [1] Cleveland, D.W. et al. (2001) Nat Rev Neurosci 2(11): 806-819 [2] Sathasivam, S. (2010) Singapore Med J 51(5): 367-372 [3] Schymick, J.C. et al. (2007) Hum Mol Genet Vol 16: 233-242 [4] Pratt, A.J. et al. (2012). Degener Neurol Neuromuscul Dis 2012(2): 1-14 [5] Lagier-Tourenne, C. Hum Mol Genet, 2010. 19(R1): p. R46-64 [6] Mochizuki, Y. et al. (2012) J Neurol Sci 323(1-2): 85-92 [7] Dormann, D. et al. (2010) EMBO J 29(16): 2841-2857 [8] Hockemeyer, D. et al. (2011) Nat Biotech 29(8): 731-734 [9] Joung, J.K. and J.D. Sander (2013) Nat Rev Mol Cell Biol 14(1): 49-55 [10]Amoroso, M.W. et al. (2013) J Neurosci 33(2): 574-586.
Resumo:
The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads. Furthermore, when the spine area was reduced by eliciting epileptiform activity, the kinetics of protein exchange between the spine compartments exhibited a concomitant decrease. As synaptic plasticity is considered to involve the dynamic flux by lateral diffusion of membrane-bound proteins into and out of the synapse, our data suggest that spine shape represents an important parameter in the susceptibility of synapses to undergo plastic change.
Resumo:
Non-protein-coding RNAs are a functionally versatile class of transcripts exerting their biological roles on the RNA level. Recently, we demonstrated that the vault complex-associated RNAs (vtRNAs) are significantly upregulated in Epstein-Barr virus (EBV)-infected human B cells. Very little is known about the function(s) of the vtRNAs or the vault complex. Here, we individually express latent EBV-encoded proteins in B cells and identify the latent membrane protein 1 (LMP1) as trigger for vtRNA upregulation. Ectopic expression of vtRNA1-1, but not of the other vtRNA paralogues, results in an improved viral establishment and reduced apoptosis, a function located in the central domain of vtRNA1-1. Knockdown of the major vault protein has no effect on these phenotypes revealing that vtRNA1-1 and not the vault complex contributes to general cell death resistance. This study describes a NF-κB-mediated role of the non-coding vtRNA1-1 in inhibiting both the extrinsic and intrinsic apoptotic pathways.
Resumo:
BACKGROUND Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. METHODS Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. RESULTS miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. CONCLUSIONS We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.
Resumo:
Animal replication-dependent histone mRNAs are subject to several post-transcriptional regulatory processes. Their non-polyadenylated 3' ends are formed preferentially during S phase by a unique nuclear cleavage event. This requires the base pairing between U7 snRNA and a histone spacer element 3' of the cleavage site. Cleavage occurs preferentially after adenosine, at a fixed distance from the hybrid region. A conserved RNA hairpin just upstream of the cleavage site is recognised by the hairpin binding protein (HBP) that acts as an auxiliary processing factor, stabilising the interaction of the histone pre-mRNA with the U7 snRNP. The interaction between HBP and the RNA hairpin is very stable and HBP is also found associated with histone mRNAs on polysomes. The hairpin and presumably, HBP are also required for nuclear export and translation of histone mRNA. Furthermore, histone mRNAs are selectively destabilised in the G2 phase or upon inhibition of DNA synthesis and this regulation is also associated with the hairpin. Recently, HBP-encoding cDNAs were isolated from various organisms. Human, mouse and Xenopus laevis HBPs are similar, while the Caenorhabditis elegans protein has significant homology to the others only in a central RNA binding domain.Copyright 1997 Academic Press Limited
Resumo:
Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium.
Resumo:
Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.
Inactive Matrix Gla-Protein Is Associated With Arterial Stiffness in an Adult Population-Based Study
Resumo:
Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.
Resumo:
Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE- vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE- replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.
Resumo:
Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington's disease.
Resumo:
Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We utilized whole-exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mutant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow-up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia.
Resumo:
The copines, named and first described by Creutz et al. (1998), comprise a two C2 domain-containing protein family that can aggregate phosphatidylserine membranes in a calcium-dependent manner. Although no enzymatic function has been attributed to copines, their carboxyl terminus shows homology to the A domain found in integrins that allows binding of magnesium ions. The secondary structure of A domains resembles a Rossmann fold, which can bind dinucleotides and is present in a number of intracellular enzymes. Due to a crossreacting activity of Mik b 1, an antibody to the IL-2R b chain, we were able to serendipitously clone human copine III (CIII). CIII is 65% identical to copine I (CI) and the 5 kb CIII transcript is expressed ubiquitously as determined by a multitissue Northern blot. A polyclonal antibody generated against the carboxyl terminus of CIII recognized CIII in immunoblots and immunoprecipitations. Phosphorylation of CIII was observed on serine and threonine residues, as determined by phosphoamino acid analysis. ^ Experiments were designed to determine whether or not any enzymatic activity, specifically kinase activity, was intrinsic to or associated with CIII. In vitro and in gel kinase assays were performed using transfected HA-tagged CI and CIII, immunoprecipitated endogenous CIII and purified endogenous CIII. The exogenous substrate MBP was phosphorylated in all in vitro kinase assays containing CIII protein purification and column chromatography expertise with me. ^
Resumo:
The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^
Resumo:
Multiple myeloma (MM) is a debilitating and incurable B-cell malignancy. Previous studies have documented that the hepatocyte growth factor (HGF) plays a role in the pathobiology of MM. The receptor tyrosine kinase MET induced signaling initiates when its ligand HGF binds to the MET receptor. However, the direct importance of MET in MM has not been elucidated. The present work used three different but complementary approaches to reduce MET protein levels or its activity to demonstrate the importance of MET in MM. ^ In the first approach, MET transcript and protein levels were reduced by directly targeting the cellular MET transcripts using shRNA retroviral infection techniques. This direct reduction of MET mRNA leads to a reduction of MET protein levels, which caused an inhibition of growth and induction of cell death. ^ In the second approach, a global transcription inhibitor flavopiridol was used as a potential pharmacological tool to reduce MET levels. MET has a short half-life of 30 min for mRNA and 4 hours for protein; therefore using a RNA pol II inhibitor such as flavopiridol would be a viable option to reduce MET levels. When using flavopiridol in MM cell lines, there was a reduction of MET transcript and protein levels, which was associated with the induction of cell death. ^ Finally in the last strategy, MET kinase activity was suppressed by MP470, a small molecule inhibitor that binds to the ATP binding pocket in the kinase domain. At concentrations where phosphorylation of MET was inhibited there was induction of cell death in MM cell lines and primary cells from patients. In addition, in MM cell lines there was a decrease in phosphorylation of AKT (ser473) and caspase-9 (ser196); downstream of MET, suggesting that the mechanism of action for survival may be through these cascade of events. ^ Overall, this study provides a proof-of-principle that MET is important for the survival of MM cell lines as well as primary plasma cells obtained from patients. Therefore, targeting MET therapeutically may be a possible strategy to treat patients with this debilitating disease of MM. ^