902 resultados para Extracellular Signal-Regulated Protein Kinase (ERK)
Resumo:
15 p.
Resumo:
We have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.
Resumo:
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Resumo:
Vascular smooth muscle cell migration is a significant contributor to many aspects of heart disease, and specifically atherosclerosis. Tissue damage in the arteries can result in the formation of a fatty streak. Smooth muscle cells (SMC) can then migrate to this site to form a fibrous cap, stabilizing the fatty plaque. Since cardiovascular disease is the leading cause of death in developed countries, this function of SMC is an essential area of study. The formation of lamellipodia and circular dorsal ruffles were studied in this project as indicators that cell migration is occurring. The roles of the proteins p53, Rac, caldesmon and PTEN were investigated with regards to these actin-based structures. The tumour suppressor p53 is often reported to cause apoptosis, senescence or cell cycle arrest when stress is placed on a cell, but has recently been shown to regulate cell migration as well. It was determined in this project that p53 could inhibit the formation of both lamellipodia and circular dorsal ruffles. It was also shown that this could occur directly through an inhibition of the GTPase Rac. Previous studies have shown that p53 can upregulate caldesmon, a protein which is known to bind to and stabilize actin filaments while inhibiting Arp2/3-mediated branching. It was confirmed that p53 could upregulate caldesmon, and that caldesmon could inhibit the formation of lamellipodia and circular dorsal ruffles. The phosphorylation of caldesmon by p21-associated kinase (PAK) or extracellular signal-related kinase (Erk) was shown to effectively reverse the ability of caldesmon to inhibit these structures. The role of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was also studied with regards to this signalling pathway. PTEN was shown to inhibit lamellipodia and circular dorsal ruffles through its lipid phosphatase activity. It was concluded that p53 can inhibit the formation of lamellipodia and circular dorsal ruffles in vascular SMC, and that this occurs through Rac, caldesmon and PTEN.
Resumo:
Protein kinases C are a family of serine threonine protein kinases that play key roles in extracellular signal transduction. Inappropriate activation of protein kinase C has been implicated in the pathophysiology of many diseases, including diabetes mellitus. Indeed, protein kinase C activation may contribute not only to the pathogenesis of diabetic complications such as nephropathy and retinopathy, but also to insulin resistance. Growing awareness that protein kinase C isoforms subserve specific subcellular functions has led to the development of isoform-specific inhibitors, which may be useful investigational tools and therapeutic agents for attenuating the effects of inappropriate protein kinase C activity. Here we review the role played by protein kinases C in diabetic nephropathy and the recent progress that has been made to modulate its activity using specific inhibitors. Curr Opin Nephrol Hypertens 7:563-570. (C) 1998 Lippincott Wiiliams & Wilkins.
Resumo:
BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy.
METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras.
CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway. (c) 2008 Elsevier Inc. All Fights reserved.
Resumo:
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.
Resumo:
BACKGROUND/AIMS: Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17beta-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17beta-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD: In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS: As expected, 17beta-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION: This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Resumo:
Background: Chronic, intermittent exposure to psychostimulant drugs results in striatal neuroadaptations leading to an increase in an array of behavioral responses on subsequent challenge days. A brain-specific striatal-enriched tyrosine phosphatase (STEP) regulates synaptic strengthening by dephosphorylating and inactivating several key synaptic proteins. This study tests the hypothesis that a substrate-trapping form of STEP will prevent the development of amphetamine-induced stereotypies. Methods: A substrate-trapping STEP protein, TAT-STEP (C-S), was infused into the ventrolateral striatum on each of 5 consecutive exposure days and I hour before amphetamine injection. Animals were challenged to see whether sensitization to the stereotypy-producing effects of amphetamine developed. The same TAT-STEP (C-S) protein was used on acute striatal slices to determine the impact on long-term potentiation and depression. Results: Infusion of TAT-STEP (C-S) blocks the increase of amphetamine-induced stereotypies when given during the 5-day period of sensitization. The TAT-STEP (C-S) has no effect if only infused on the challenge day. Treatment of acute striatal slices with TAT-STEP (C-S) blocks the induction of long-term potentiation and potentates long-term depression. Conclusions: A substrate trapping form of STEP blocks the induction of amphetamine-induced neuroplasticity within the ventrolateral striatum and supports the hypothesis that STEP functions as a tonic break on synaptic strengthening.
Resumo:
In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Matrix metal loprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha and RC-3095 (10 ng/mL), Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis. GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal-related kinase (ERK)-1/2, Jun NH2-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-kappa B and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-alpha. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling. Online address: http://www.molmed.org doi: 10.2119/molmed.2012.00083