960 resultados para Extra-chromosomal recombination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite Duplex ultrasonography being a noninvasive, easily repeatable, readily available and economical tool, this examination and its normal ranges are rarely described in Moyamoya disease (MMD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous genetic variants of the Echinococcus antigen B (AgB) are encountered within a single metacestode. This could be a reflection of gene redundancy or the result of a somatic hypermutation process. We evaluate the complexity of the AgB multigene family by characterizing the upstream promoter regions of the 4 already known genes (EgAgB1-EgAgB4) and evaluating their redundancy in the genome of 3 Echinococcus species (E. granulosus, E. ortleppi and E. multilocularis) using PCR-based approaches. We have ascertained that the number of AgB gene copies is quite variable, both within and between species. The most repetitive gene seems to be AgB3, of which there are more than 110 copies in E. ortleppi. For E. granulosus, we have cloned and characterized 10 distinct upstream promoter regions of AgB3 from a single metacestode. Our sequences suggest that AgB1 and AgB3 are involved in gene conversion. These results are discussed in light of the role of gene redundancy and recombination in parasite evasion mechanisms of host immunity, which at present are known for protozoan organisms, but virtually unknown for multicellular parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometriosis may progress to invasive endometrioid adenocarcinoma, particularly in the ovary. Up to now, little is known of the molecular mechanisms possibly involved in the malignant transformation of endometriosis. Therefore, in this study, extragonadal endometriosis (n = 10), ovarian endometriosis without malignancy (n = 10), ovarian endometriosis with direct transition into endometrioid adenocarcinoma (n = 8), and normal endometrium (n = 12) were investigated for numerical chromosomal aberrations by fluorescence in situ hybridization using centromere enumeration probes. The proportions of cells with aneusomies were semiquantitatively assessed. Trisomies 1 and 7, and monosomies 9 and 17 were found in endometriosis, ovarian endometrioid adenocarcinoma, and normal endometrium. The proportions of aneusomic cells were significantly higher in ovarian endometrioid carcinoma compared with ovarian endometriosis (P < 0.001), and in ovarian endometriosis compared with extragonadal endometriosis and normal endometrium (P < 0.001). The data provide new evidence of a common lineage of endometriosis and ovarian endometrioid carcinoma. The higher frequency of chromosomal aberrations in endometrioid carcinoma than in endometriosis may reflect an expansion of aberrant cell clones already present in endometriosis during the progression to cancer. The higher frequency of chromosomal aberrations in ovarian endometriosis than in extragonadal endometriosis suggests a role of the ovarian stromal milieu in the induction of genetic changes, which may eventually lead to invasive cancer.