903 resultados para Expression of p53
Resumo:
Ectopic gastric mucosa (EGM) is considered to be a congenital condition. Rare cases of adenocarcinoma have been described. There are no data justifying regular biopsies or follow-up. Cyclooxygenase-2 (COX-2) is a protein involved in gastrointestinal tumor development by inhibiting apoptosis and regulating angiogenesis. The aim of this prospective study was to evaluate COX-2 expression in EGM and compare it with normal tissue and Barrett's esophagus. We evaluated 1327 patients. Biopsies were taken from the inlet patch for histological evaluation and from the gastric antrum to assess Helicobacter pylori infection. Biopsies taken from normal esophageal, gastric antrum and body mucosa and Barrett's esophagus were retrieved from a tissue bank. EGM biopsies were evaluated with respect to type of epithelium, presence of H. pylori, and inflammation. COX-2 was detected by immunohistochemistry using the avidin-biotin complex. EGM islets were found in 14 patients (1.1%). Histological examination revealed fundic type epithelium in 58.3% of cases, H. pylori was present in 50% and chronic inflammation in 66.7%. Expression of COX-2 was negative in normal distal esophagus, normal gastric antrum and normal gastric body specimens (10 each). In contrast, EGM presented over-expression of COX-2 in 41.7% of cases and Barrett's esophagus in 90% of cases (P = 0.04 and 0.03, respectively). COX-2 immunoexpression in EGM was not related to gender, age, epithelium type, presence of inflammation or intestinal metaplasia, H. pylori infection, or any endoscopic finding. Our results demonstrate up-regulation of COX-2 in EGM, suggesting a possible malignant potential of this so-called harmless mucosa.
Resumo:
GM1 gangliosidosis is an autosomal recessive disorder caused by the deficiency of lysosomal acid hydrolase ß-galactosidase (ß-Gal). It is one of the most frequent lysosomal storage disorders in Brazil, with an estimated frequency of 1:17,000. The enzyme is secreted and can be captured by deficient cells and targeted to the lysosomes. There is no effective treatment for GM1 gangliosidosis. To determine the efficiency of an expression vector for correcting the genetic defect of GM1 gangliosidosis, we tested transfer of the ß-Gal gene (Glb1) to fibroblasts in culture using liposomes. ß-Gal cDNA was cloned into the expression vectors pSCTOP and pREP9. Transfection was performed using 4 µL lipofectamine 2000 and 1.5-2.0 µg DNA. Cells (2 x 10(5)/well) were harvested 24 h, 48 h, and 7 days after transfection. Enzyme specific activity was measured in cell lysate and supernatant by fluorometric assay. Twenty-four hours after transfection, treated cells showed a higher enzyme specific activity (pREP9-ß-Gal: 621.5 ± 323.0, pSCTOP-ß-Gal: 714.5 ± 349.5, pREP9-ß-Gal + pSCTOP-ß-Gal: 1859.0 ± 182.4, and pREP9-ß-Gal + pTRACER: 979.5 ± 254.9 nmol·h-1·mg-1 protein) compared to untreated cells (18.0 ± 3.1 for cell and 32.2 ± 22.2 nmol·h-1·mg-1 protein for supernatant). However, cells maintained in culture for 7 days showed values similar to those of untreated patients. In the present study, we were able to transfect primary patients' skin fibroblasts in culture using a non-viral vector which overexpresses the ß-Gal gene for 24 h. This is the first attempt to correct fibroblasts from patients with GM1 gangliosidosis by gene therapy using a non-viral vector.
Resumo:
Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.
Resumo:
Our objective was to clone, express and characterize adult Dermatophagoides farinae group 1 (Der f 1) allergens to further produce recombinant allergens for future clinical applications in order to eliminate side reactions from crude extracts of mites. Based on GenBank data, we designed primers and amplified the cDNA fragment coding for Der f 1 by nested-PCR. After purification and recovery, the cDNA fragment was cloned into the pMD19-T vector. The fragment was then sequenced, subcloned into the plasmid pET28a(+), expressed in Escherichia coli BL21 and identified by Western blotting. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Sequence analysis showed the presence of an open reading frame containing 966 bp that encodes a protein of 321 amino acids. Interestingly, homology analysis showed that the Der p 1 shared more than 87% identity in amino acid sequence with Eur m 1 but only 80% with Der f 1. Furthermore, phylogenetic analyses suggested that D. pteronyssinus was evolutionarily closer to Euroglyphus maynei than to D. farinae, even though D. pteronyssinus and D. farinae belong to the same Dermatophagoides genus. A total of three cysteine peptidase active sites were found in the predicted amino acid sequence, including 127-138 (QGGCGSCWAFSG), 267-277 (NYHAVNIVGYG) and 284-303 (YWIVRNSWDTTWGDSGYGYF). Moreover, secondary structure analysis revealed that Der f 1 contained an a helix (33.96%), an extended strand (17.13%), a ß turn (5.61%), and a random coil (43.30%). A simple three-dimensional model of this protein was constructed using a Swiss-model server. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Alignment and phylogenetic analysis suggests that D. pteronyssinus is evolutionarily more similar to E. maynei than to D. farinae.
Resumo:
Mouse PNAS-4 (mPNAS-4) has 96% identity with human PNAS-4 (hPNAS-4) in primary sequence and has been reported to be involved in the apoptotic response to DNA damage. However, there have been no studies reported of the biological functions of mPNAS-4. In studies conducted by our group (unpublished data), it was interesting to note that overexpression of mPNAS-4 promoted apoptotic death in Lewis lung carcinoma cells (LL2) and colon carcinoma cells (CT26) of mice both in vitro and in vivo. In our studies, mPNAS-4 was cloned into the pGEX-6P-1 vector with GST tag at N-terminal in Escherichia coli strain BL21(DE3). The soluble and insoluble expression of recombinant protein mPNAS-4 (rmPNAS-4) was temperature-dependent. The majority of rmPNAS-4 was insoluble at 37°C, while it was almost exclusively expressed in soluble form at 20°C. The soluble rmPNAS-4 was purified by one-step affinity purification, using a glutathione Sepharose 4B column. The rmPNAS-4 protein was further identified by electrospray ionization-mass spectrometry analysis. The search parameters of the parent and fragment mass error tolerance were set at 0.1 and 0.05 kDa, respectively, and the sequence coverage of search result was 28%. The purified rmPNAS-4 was further used as immunogen to raise polyclonal antibodies in New Zealand white rabbit, which were suitable to detect both the recombinant and the endogenous mPNAS-4 in mouse brain tissue and LL2 cells after immunoblotting and/or immunostaining. The purified rmPNAS-4 and our prepared anti-mPNAS-4 polyclonal antibodies may provide useful tools for future biological function studies for mPNAS.
Resumo:
Apoptotic protease activating factor 1 (APAF-1) has a critical role in the regulation of apoptosis. In the present study, the mRNA expression analysis of different APAF-1 transcripts (APAF-1S, APAF-1LC, APAF-1LN, and APAF-1XL) was analyzed in bone marrow samples from 37 patients with acute myeloid leukemia (newly diagnosed, with no previous treatment). APAF-1XL and APAF-1LN transcripts (with and without an extra WD-40 repeat region, respectively) were detected in all samples, although the major form expressed was APAF-1XL in 65% of the samples (group 1), while 35% of the samples expressed primarily APAF-1LN (group 2). Only 46% of the patients presented complete remission in response to remission induction therapy (represented by less than 5% marrow blasts and hematological recovery), all but 2 cases being from group 1, 21.6% did not attain complete remission (only 1 case from group 1), and 32.4% of the patients died early. Lower expression of APAF-1XL (APAF-1XL/APAF-1LN ratio <1.2) was associated with a poor response to therapy (P = 0.0005, Fisher exact test). Both groups showed similar characteristics regarding white blood cell counts, cytogenetic data or presence of gene rearrangements associated with good prognosis as AML1-ETO, CBFB-MYH11 and PML/RARA. Since it has been shown that only the isoforms with the extra WD-40 repeat region activate procaspase-9, we suggest that low procaspase-9 activation may also be involved in the deregulation of apoptosis and chemotherapy resistance in acute myeloid leukemia.
Resumo:
Hantavirus cardiopulmonary syndrome (HCPS) has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.
Resumo:
Epithelial intercellular cohesion, mainly mediated by E-cadherin (CDH1) expression and function, may be deregulated during cancer cell invasion of adjacent tissues and lymphatic and vascular channels. CDH1 expression is down-modulated in invasive lobular breast carcinomas but its regulation in invasive ductal carcinomas (IDC) is less clear. CDH1 expression is repressed by transcription factors such as Snail (SNAI1) and its product is degraded after Hakai ubiquitination. We compared CDH1, SNAI1 and HAKAI mRNA expression in IDC and paired adjacent normal breast tissue and evaluated its relation with node metastasis and circulating tumor cells. Matched tumor/peritumoral and blood samples were collected from 30 patients with early IDC. Epithelial cells from each compartment (tumor/peritumoral) were recovered by an immunomagnetic method and gene expression was determined by real time RT-PCR. There were no differences in CDH1, SNAI1 and HAKAI mRNA expression between tumor and corresponding peritumoral samples and no differential tumoral gene expression according to nodal involvement. Another 30 patients with a long-term follow-up (at least 5 years) and a differential prognosis (good or poor, as defined by breast cancer death) had E-cadherin and Snail protein detected by immunohistochemistry in tumor samples. In this group, E-cadherin-positive expression, but not Snail, may be associated with a better prognosis. This is the first report simultaneously analyzing CDH1, SNAI1 and HAKAI mRNA expression in matched tumor and peritumoral samples from patients with IDC. However, no clear pattern of their expression could distinguish the invasive tumor compartment from its adjacent normal tissue.
Resumo:
Metabolic syndrome is associated with an increased risk of developing cardiovascular diseases and Plasminogen activator inhibitor 1 (PAI-1) overexpression may play a significant role in this process. A positive correlation between adipose tissue gene expression of PAI-1 and its serum concentration has been reported. Furthermore, high serum levels of thyroid hormones (T3 and T4) and PAI-1 have been observed in obese children. The present study evaluates the impact of thyroid hormone treatment on white adipose tissue PAI-1 gene expression and its serum concentration. Male Wistar rats (60 days old) were treated for three weeks with T4 (50 µg/day, Hyper) or with saline (control). Additionally, 3T3-L1 adipocytes were treated for 24 h with T4 (100 nM) or T3 (100 nM). PAI-1 gene expression was determined by real-time PCR, while the serum concentration of PAI-1 was measured by ELISA using a commercial kit (Innovative Research, USA). Both the serum concentration of PAI-1 and mRNA levels were similar between groups in retroperitoneal and epididymal white adipose tissue. Using 3T3-L1 adipocytes, in vitro treatment with T4 and T3 increased the gene expression of PAI-1, suggesting non-genomic and genomic effects, respectively. These results demonstrate that thyroid hormones have different effects in vitro and in vivo on PAI-1 gene expression in adipocytes.
Resumo:
Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) and protein levels in the right and left heart auricles of naive control and long-term (12 weeks) socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h) was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70%) compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62%) and left (about 81%) auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%), DBH (about 37%) and PNMT (about 60%) only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.
Resumo:
Integrins are heterodimeric receptors composed of α and β transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. β2 integrin (CD18) associates with four different α (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that β2 integrin is also expressed by other types of cells. Since the gene for β2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that β2 integrin and the αL, αM, and αX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of β2 integrin or against its α subunit partners, showed that β2 integrin, as well as the αL, αM, and αX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of β2 integrin in these various locations in the embryonic heart. These results indicate that the β2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.
Resumo:
A correlation between cancer and hypercoagulability has been described for more than a century. Patients with cancer are at increased risk for thrombotic complications and the clotting initiator protein, tissue factor (TF), is possibly involved in this process. Moreover, TF may promote angiogenesis and tumor growth. In addition to TF, thrombin seems to play a relevant role in tumor biology, mainly through activation of protease-activated receptor-1 (PAR-1). In the present study, we prospectively studied 39 lung adenocarcinoma patients in relation to the tumor expression levels of TF and PAR-1 and their correlation with thrombosis outcome and survival. Immunohistochemical analysis showed TF positivity in 22 patients (56%), most of them in advanced stages (III and IV). Expression of PAR-1 was found in 15 patients (39%), most of them also in advanced stages (III and IV). Remarkably, no correlation was observed between the expression of TF or PAR-1 and risk for thrombosis development. On the other hand, patients who were positive for TF or PAR-1 tended to have decreased long-term survival. We conclude that immunolocalization of either TF or PAR-1 in lung adenocarcinoma may predict a poor prognosis although lacking correlation with thrombosis outcome.
Resumo:
Estradiol participates in the control of energy homeostasis, as demonstrated by an increase in food intake and in body weight gain after ovariectomy in rats. In the present study, female Wistar rats (200-230 g, N = 5-15 per group), with free access to chow, were individually housed in metabolic cages. We investigated food intake, body weight, plasma leptin levels, measured by specific radioimmunoassay, and the hypothalamic mRNA expression of orexigenic and anorexigenic neuropeptides, determined by real-time PCR, in ovariectomized rats with (OVX+E) and without (OVX) estradiol cypionate treatment (10 µg/kg body weight, sc, for 8 days). Hormonal and mRNA expression were determined at pre-feeding and 4 h after food intake. OVX+E rats showed lower food intake, less body weight gain and lower plasma leptin levels. In the OVX+E group, we also observed a reduction of neuropeptide Y (NPY), agouti-related protein (AgRP) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression in the arcuate nucleus and a decrease in orexin A in the lateral hypothalamic area (LHA). There was an increase in leptin receptor (LepRb), melanocortin-4 receptor (MC4-R), CART, and mainly corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus and LepRb and CART mRNA in the LHA. These data show that hypophagia induced by estradiol treatment is associated with reduced hypothalamic expression of orexigenic peptides such as NPY, AgRP and orexin A, and increased expression of the anorexigenic mediators MC4-R, LepRb and CRH. In conclusion, estradiol decreases food intake, and this effect seems to be mediated by peripheral factors such as leptin and the differential mRNA expression of neuropeptides in the hypothalamus.
Resumo:
Lipopolysaccharide (LPS) activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R) and smooth (S) forms signal through Toll-like receptor 4 (TLR4), but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS) and nitric oxide (NO) generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.
Resumo:
Lipopolysaccharide exerts many effects on many cell lines, including cytokine secretion, and cell apoptosis and necrosis. We investigated the in vitro effects of lipopolysaccharide on apoptosis of cultured human dental pulp cells and the expression of Bcl-2 and Bax. Dental pulp cells showed morphologies typical of apoptosis after exposure to lipopolysaccharide. Flow cytometry showed that the rate of apoptosis of human dental pulp cells increased with increasing lipopolysaccharide concentration. Compared with controls, lipopolysaccharide promoted pulp cell apoptosis (P < 0.05) from 0.1 to 100 μg/mL but not at 0.01 μg/mL. Cell apoptosis was statistically higher after exposure to lipopolysaccharide for 3 days compared with 1 day, but no difference was observed between 3 and 5 days. Immunohistochemistry showed that expression of Bax and Bcl-2 was enhanced by lipopolysaccharide at high concentrations, but no evident expression was observed at low concentrations (0.01 and 0.1 μg/mL) or in the control groups. In conclusion, lipopolysaccharide induced dental pulp cell apoptosis in a dose-dependent manner, but apoptosis did not increase with treatment duration. The expression of the apoptosis regulatory proteins Bax and Bcl-2 was also up-regulated in pulp cells after exposure to a high concentration of lipopolysaccharide.