939 resultados para Explicit numerical method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic behaviour of a fishing vessel in waves is studied in order to reveal its parametric rolling characteristics. This paper presents experimental and numerical results in longitudinal regular waves. The experimental results are compared against the results of a time-domain non-linear strip theory model of ship motions in six degrees-of-freedom. These results contribute to the validation of the parametric rolling prediction method, so that it can be used as an assessment tool to evaluate both the susceptibility and severity of occurrence of parametric rolling at the early design stage of these types of vessels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present and validate a numerical technique for the simulation of the overtopping and onset of failure in rockfill dams due to mass sliding. This goal is achieved by coupling a fluid dynamic model for the simulation of the free surface and through-flow problems, with a numerical technique for the calculation of the rockfill response and deformation. Both the flow within the dam body and in its surroundings are taken into account. An extensive validation of the resulting computational method is performed by solving several failure problems on physical models of rockfill dams for which experimental results have been obtained by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta carta al editor, el profesor D. Enrique Alarcón Álvarez comenta el artículo de Thomas J. Rudolphi "An implementation of the Boundary Element Method for zoned media with stress discontinuities" publicado en la revista "International Journal for Numerical Methods in Engineering" Vol. 19, Nº 1, pags. 1–15, enero 1983.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los ensayos virtuales de materiales compuestos han aparecido como un nuevo concepto dentro de la industria aeroespacial, y disponen de un vasto potencial para reducir los enormes costes de certificación y desarrollo asociados con las tediosas campañas experimentales, que incluyen un gran número de paneles, subcomponentes y componentes. El objetivo de los ensayos virtuales es sustituir algunos ensayos por simulaciones computacionales con alta fidelidad. Esta tesis es una contribución a la aproximación multiescala desarrollada en el Instituto IMDEA Materiales para predecir el comportamiento mecánico de un laminado de material compuesto dadas las propiedades de la lámina y la intercara. La mecánica de daño continuo (CDM) formula el daño intralaminar a nivel constitutivo de material. El modelo de daño intralaminar se combina con elementos cohesivos para representar daño interlaminar. Se desarrolló e implementó un modelo de daño continuo, y se aplicó a configuraciones simples de ensayos en laminados: impactos de baja y alta velocidad, ensayos de tracción, tests a cortadura. El análisis del método y la correlación con experimentos sugiere que los métodos son razonablemente adecuados para los test de impacto, pero insuficientes para el resto de ensayos. Para superar estas limitaciones de CDM, se ha mejorado la aproximación discreta de elementos finitos enriqueciendo la cinemática para incluir discontinuidades embebidas: el método extendido de los elementos finitos (X-FEM). Se adaptó X-FEM para un esquema explícito de integración temporal. El método es capaz de representar cualitativamente los mecanismos de fallo detallados en laminados. Sin embargo, los resultados muestran inconsistencias en la formulación que producen resultados cuantitativos erróneos. Por último, se ha revisado el método tradicional de X-FEM, y se ha desarrollado un nuevo método para superar sus limitaciones: el método cohesivo X-FEM estable. Las propiedades del nuevo método se estudiaron en detalle, y se concluyó que el método es robusto para implementación en códigos explícitos dinámicos escalables, resultando una nueva herramienta útil para la simulación de daño en composites. Virtual testing of composite materials has emerged as a new concept within the aerospace industry. It presents a very large potential to reduce the large certification costs and the long development times associated with the experimental campaigns, involving the testing of a large number of panels, sub-components and components. The aim of virtual testing is to replace some experimental tests by high-fidelity numerical simulations. This work is a contribution to the multiscale approach developed in Institute IMDEA Materials to predict the mechanical behavior of a composite laminate from the properties of the ply and the interply. Continuum Damage Mechanics (CDM) formulates intraply damage at the the material constitutive level. Intraply CDM is combined with cohesive elements to model interply damage. A CDM model was developed, implemented, and applied to simple mechanical tests of laminates: low and high velocity impact, tension of coupons, and shear deformation. The analysis of the results and the comparison with experiments indicated that the performance was reasonably good for the impact tests, but insuficient in the other cases. To overcome the limitations of CDM, the kinematics of the discrete finite element approximation was enhanced to include mesh embedded discontinuities, the eXtended Finite Element Method (X-FEM). The X-FEM was adapted to an explicit time integration scheme and was able to reproduce qualitatively the physical failure mechanisms in a composite laminate. However, the results revealed an inconsistency in the formulation that leads to erroneous quantitative results. Finally, the traditional X-FEM was reviewed, and a new method was developed to overcome its limitations, the stable cohesive X-FEM. The properties of the new method were studied in detail, and it was demonstrated that the new method was robust and can be implemented in a explicit finite element formulation, providing a new tool for damage simulation in composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve) at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze the performance (i.e., the I - V curve) of a commercial solar panel at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer's datasheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correct modeling of the equivalent circuits regarding solar cell and panels is today an essential tool for power optimization. However, the parameter extraction of those circuits is still a quite difficult task that normally requires both experimental data and calculation procedures, generally not available to the normal user. This paper presents a new analytical method that easily calculates the equivalent circuit parameters from the data that manufacturers usually provide. The analytical approximation is based on a new methodology, since methods developed until now to obtain the aforementioned equivalent circuit parameters from manufacturer's data have always been numerical or heuristic. Results from the present method are as accurate as the ones resulting from other more complex (numerical) existing methods in terms of calculation process and resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An application of the Finite Element Method (FEM) to the solution of a geometric problem is shown. The problem is related to curve fitting i.e. pass a curve trough a set of given points even if they are irregularly spaced. Situations where cur ves with cusps can be encountered in the practice and therefore smooth interpolatting curves may be unsuitable. In this paper the possibilities of the FEM to deal with this type of problems are shown. A particular example of application to road planning is discussed. In this case the funcional to be minimized should express the unpleasent effects of the road traveller. Some comparative numerical examples are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examples of global solutions of the shell equations are presented, such as the ones based on the well known Levy series expansion. Also discussed are some natural extensions of the Levy method as well as the inherent limitations of these methods concerning the shell model assumptions, boundary conditions and geometric regularity. Finally, some open additional design questions are noted mainly related to the simultaneous use in analysis of these global techniques and the local methods (like the finite elements) to finding the optimal shell shape, and to determining the reinforcement layout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.