960 resultados para Experiment Of Microgravity Fluid Mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a pair of tandem cylinders is immersed in a flow the downstream cylinder can be excited into wake-induced vibrations (WIV) due to the interaction with vortices coming from the upstream cylinder. Assi, Bearman & Meneghini ( J. Fluid Mech. , vol. 661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates across the wake. In the present paper we investigate how the cylinder responds to that excitation, characterising the amplitude and frequency of response and its dependency on other parameters of the system. We introduce the concept of wake stiffness , a fluid dynamic effect that can be associated, to a first approximation, with a linear spring with stiffness proportional to Re and to the steady lift force occurring for staggered cylinders. By a series of experiments with a cylinder mounted on a base without springs we verify that such wake stiffness is not only strong enough to sustain oscillatory motion, but can also dominate over the structural stiffness of the system. We conclude that while unsteady vortex–structure interactions provide the energy input to sustain the vibrations, it is the wake stiffness phenomenon that defines the character of the WIV response

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Several recent studies have shown that a positive fluid balance in critical illness is associated with worse outcome. We tested the effects of moderate vs. high-volume resuscitation strategies on mortality, systemic and regional blood flows, mitochondrial respiration, and organ function in two experimental sepsis models. Methods 48 pigs were randomized to continuous endotoxin infusion, fecal peritonitis, and a control group (n = 16 each), and each group further to two different basal rates of volume supply for 24 hours [moderate-volume (10 ml/kg/h, Ringer's lactate, n = 8); high-volume (15 + 5 ml/kg/h, Ringer's lactate and hydroxyethyl starch (HES), n = 8)], both supplemented by additional volume boli, as guided by urinary output, filling pressures, and responses in stroke volume. Systemic and regional hemodynamics were measured and tissue specimens taken for mitochondrial function assessment and histological analysis. Results Mortality in high-volume groups was 87% (peritonitis), 75% (endotoxemia), and 13% (controls). In moderate-volume groups mortality was 50% (peritonitis), 13% (endotoxemia) and 0% (controls). Both septic groups became hyperdynamic. While neither sepsis nor volume resuscitation strategy was associated with altered hepatic or muscle mitochondrial complex I- and II-dependent respiration, non-survivors had lower hepatic complex II-dependent respiratory control ratios (2.6 +/- 0.7, vs. 3.3 +/- 0.9 in survivors; P = 0.01). Histology revealed moderate damage in all organs, colloid plaques in lung tissue of high-volume groups, and severe kidney damage in endotoxin high-volume animals. Conclusions High-volume resuscitation including HES in experimental peritonitis and endotoxemia increased mortality despite better initial hemodynamic stability. This suggests that the strategy of early fluid management influences outcome in sepsis. The high mortality was not associated with reduced mitochondrial complex I- or II-dependent muscle and hepatic respiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. Design: The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. Methods: Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1–42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. Results: In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. Conclusion: Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune dysfunction is encountered during spaceflight. Various aspects of spaceflight, including microgravity, cosmic radiation, and both physiological and psychological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. Clinostatic RWV bioreactors that simulate aspects of microgravity were used to analyze the response of human PBMC to polyclonal and oligoclonal activation. PHA responsiveness in the RWV bioreactor was almost completely diminished. IL-2 and IFN-$\gamma$ secretion was reduced whereas IL-1$\beta$ and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Antigen specific T cell activation, including the mixed-lymphocyte reaction, tetanus toxoid responsiveness, and Borrelia activation of a specific T cell line, was also suppressed in the RWV bioreactor.^ The role of altered culture conditions in the suppression of T cell activation were considered. Potential reduced cell-cell and cell-substratum interactions in the RWV bioreactor may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions was not affected. Furthermore, increasing cell-population density, and therefore cell-cell interactions, in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Finally, activation of purified T cells with crosslinked CD2/CD28 or CD3/CD28 antibody pairs, which does not require costimulation through cell-cell contact, was completely suppressed in the RWV bioreactor suggesting a defect internal to the T cell.^ Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation in simulated microgravity, there is a specific dysfunction within the T cell involving the signaling pathways upstream of PKC activation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threo-methylphenidate is a chiral psychostimulant drug widely prescribed to treat attention-deficit hyperactivity disorder in children and adolescents. An enantioselective CE-based assay with head-column field-amplified sample stacking for analysis of threo-methylphenidate enantiomers in liquid/liquid extracts of oral fluid is described. Analytes are electrokinetically injected across a short water plug placed at the capillary inlet and become stacked at the interface between plug and buffer. Enantiomeric separation occurs within a few minutes in a pH 3.0 phosphate/triethanolamine buffer containing 20 mg/mL (2-hydroxypropyl)-β-CD as chiral selector. The assay with six point multilevel internal calibration provides a linear response for each enantiomer in the 10-200 ng/mL concentration range, is simple, inexpensive, and reproducible, and has an LOQ of 5 ng/mL. It was applied to oral fluid patient samples that were collected up to 12 h after intake of an immediate release tablet and two different extended release formulations with racemic methylphenidate. Drug profiles could thereby be assessed in a stereoselective way. Almost no levorotary threo-methylphenidate enantiomer was detected after intake of the two extended release formulations, whereas this enantiomer was detected during the first 2.5 h after intake of the immediate release preparation. The noninvasive collection of oral fluid is an attractive alternative to plasma for the monitoring of methylphenidate exposure in the pediatric community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic stimulation of the cochlea leads to a travelling wave in the cochlear fluids and on the basilar membrane (BM). It has long been suspected that this travelling wave leads to a steady streaming flow in the cochlea. Theoretical investigations suggested that the steady streaming might be of physiological relevance. Here, we present a quantitative study of the steady streaming in a computational model of a passive cochlea. The structure of the streaming flow is illustrated and the sources of streaming are closely investigated. We describe a source of streaming which has not been considered in the cochlea by previous authors. This source is also related to a steady axial displacement of the BM which leads to a local stretching of this compliant structure. We present theoretical predictions for the streaming intensity which account for these new phenomena. It is shown that these predictions compare well with our numerical results and that there may be steady streaming velocities of the order of millimetres per second. Our results indicate that steady streaming should be more relevant to low-frequency hearing because the strength of the streaming flow rapidly decreases for higher frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT The etiology of chronic subdural hematoma (CSDH) in nongeriatric patients (≤ 60 years old) often remains unclear. The primary objective of this study was to identify spinal CSF leaks in young patients, after formulating the hypothesis that spinal CSF leaks are causally related to CSDH. METHODS All consecutive patients 60 years of age or younger who underwent operations for CSDH between September 2009 and April 2011 at Bern University Hospital were included in this prospective cohort study. The patient workup included an extended search for a spinal CSF leak using a systematic algorithm: MRI of the spinal axis with or without intrathecal contrast application, myelography/fluoroscopy, and postmyelography CT. Spinal pathologies were classified according to direct proof of CSF outflow from the intrathecal to the extrathecal space, presence of extrathecal fluid accumulation, presence of spinal meningeal cysts, or no pathological findings. The primary outcome was proof of a CSF leak. RESULTS Twenty-seven patients, with a mean age of 49.6 ± 9.2 years, underwent operations for CSDH. Hematomas were unilateral in 20 patients and bilateral in 7 patients. In 7 (25.9%) of 27 patients, spinal CSF leakage was proven, in 9 patients (33.3%) spinal meningeal cysts in the cervicothoracic region were found, and 3 patients (11.1%) had spinal cysts in the sacral region. The remaining 8 patients (29.6%) showed no pathological findings. CONCLUSIONS The direct proof of spinal CSF leakage in 25.9% of patients suggests that spinal CSF leaks may be a frequent cause of nongeriatric CSDH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.