1000 resultados para Entropia -- Teoria matemàtica
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We give a unified solution the conjugacy problem in Thompson’s groups F, V , and T using strand diagrams, and we analyze the complexity of the resulting algorithms.
Resumo:
We describe an explicit relationship between strand diagrams and piecewise-linear functions for elements of Thompson’s group F. Using this correspondence, we investigate the dynamics of elements of F, and we show that conjugacy of one-bump functions can be described by a Mather-type invariant.
Resumo:
"Vegeu el resum a l'inici del document del fitxer ajunt."
Resumo:
We describe the relation between two characterizations of conjugacy in groups of piecewise-linear homeomorphisms, discovered by Brin and Squier in [2] and Kassabov and Matucci in [5]. Thanks to the interplay between the techniques, we produce a simplified point of view of conjugacy that allows ua to easily recover centralizers and lends itself to generalization.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one, due to the shallowness the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model with a suitable family of bimodal distributions.