871 resultados para Energy conversion efficiencies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A factorial experiment was conducted for 60 days to determine of the response of Narrow clawed crayfish Astacus leptodactylus (average weight of 17±2.3 g) to diets containing various protein and energy levels. Nine diets containing three levels of protein (30, 35 and 40 %) and three levels of energy (300,370 and 450 kcal/100g) were formulated and prepared in this trial. Each diet also was used in two levels of salinity include 0 (fresh water) and 12 ppt(Caspian sea water). So this study was conducted with 18 treatments and triplicates random group of 5 crayfish per each 110-litre tank. Weight Gain, Feed conversion ratio (FCR), Protein Efficiency Ratio (PER), Net Protein Utilization (NPU), Daily Food Consumption (DFC), Survival (SVR) and body composition of tail-muscle meat of animal were determined. Comparing the growth parameters in response to interaction between protein, energy and salinity levels demonstrated that all growth parameters have difference between them significantly (p<0.05). Comparing between survival in fresh and Caspian Sea water showed difference significantly. Compare the body composition results indicate the greatest amount of protein absorption in diet number 2(30/370) on fresh water condition. Results from this study indicate that narrow clawed crayfish can be fed a practical diet containing 30% protein and 370 Kcal/100g on non-salinity water which is the optimize CP percentage for their producer’s profits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3x3 factorial experiment was conducted to determine the optimum protein to energy (P/E) ratio for rainbow trout in brackish water. Three crud protein levels and three energy levels at each protein level were utilized. Diets were made in semi-purified that in all of them fish meal, casein and gelatin as the sources of protein and dextrin, starch and oil as the sources of energy were used. Each of experimental diets was fed to triplicate groups of 20 fish with an average individual weight of 81.5 g in 9 2000-1 flow trough fiberglass tanks. During this experiment water temperature, dissolved oxygen, PH and EC were 15±2°C, 6.5-8.1 mg/1, 7.7-8.6 and 25400 grills respectively. The diets were fed at a rate between 1.6-2 wet body weight% per day depended to water temperature in three equal rations and adjusted two weekly for 84 days. At each of protein levels, weight gain percent (%WG), average daily growth percent (%ADG), protein efficiency ratio (PER), apparent net protein utilization percent (%ANPU), or percent of protein deposited, specific growth rate (SGR) and condition factor (CF) were found to increase and food conversion ratio (FCR) was found to decrease with an increasing energy levels from 370 to 430 Kcal/100g. Fish fed a 35% protein, 430 Kcal/100g energy diet with a P/E ratio of 81.4 mg protein/ Kcal PFV energy, attained the best growth performance. Fat and moisture of carcass were affected by protein and energy levels of test diets while protein and ash of carcass were relatively constant in different treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a map of the transformation of energy in China as a Sankey diagram. After a review of previous work, and a statement of methodology, our main work has been the identification, evaluation, and treatment of appropriate data sources. This data is used to construct the Sankey diagram, in which flows of energy are traced from energy sources through end-use conversion devices, passive systems and final services to demand drivers. The resulting diagram provides a convenient and clear snapshot of existing energy transformations in China which can usefully be compared with a similar global analysis and which emphasises the potential for improvements in energy efficiency in 'passive systems'. More broadly, it gives a basis for examining and communicating future energy scenarios, including changes to demand, changes to the supply mix, changes in efficiency and alternative provision of existing services. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper shows that generating cross sections using three-dimensional geometry and application of axial discontinuity factors are essential requirements for obtaining accurate prediction of criticality and zone average reaction rates in highly heterogeneous RBWR-type systems using computer codes based on diffusion theory approximation. The same methodology as presented here will be used to generate discontinuity factors for each axial interface between fuel assembly zones to ensure preservation of reaction rates in each zone and global multiplication factor. The use of discontinuity factors and three-dimensional cross sections may allow for a coarser energy group structure which is desirable to simplify and speed up transient calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when compared with renewables, nuclear power and carbon capture and storage. Yet, how should future priorities be directed? Should efforts be focused on light bulbs or diesel engines, insulating houses or improving coal-fired power stations? Previous attempts to assess energy efficiency options provide a useful snapshot for directing short-term responses, but are limited to only known technologies developed under current economic conditions. Tomorrow's economic drivers are not easy to forecast, and new technical solutions often present in a disruptive manner. Fortunately, the theoretical and practical efficiency limits do not vary with time, allowing the uncertainty of economic forecasts to be avoided and the potential of yet to be discovered efficient designs to be captured. This research aims to provide a rational basis for assessing all future developments in energy efficiency. The global fow of energy through technical devices is traced from fuels to final services, and presented as an energy map to convey visually the scale of energy use. An important distinction is made between conversion devices, which upgrade energy into more useable forms, and passive systems, from which energy is lost as low temperature heat, in exchange for final services. Theoretical efficiency limits are calculated for conversion devices using exergy analysis, and show a 89% potential reduction in energy use. Efforts should be focused on improving the efficiency of, in relative order: biomass burners, refrigeration systems, gas burners and petrol engines. For passive systems, practical utilisation limits are calculated based on engineering models, and demonstrate energy savings of 73% are achievable. Significant gains are found in technical solutions that increase the thermal insulation of building fabrics and reduce the mass of vehicles. The result of this work is a consistent basis for comparing efficiency options, that can enable future technical research and energy policy to be directed towards the actions that will make the most difference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonant-based vibration harvesters have conventionally relied upon accessing the fundamental mode of directly excited resonance to maximize the conversion efficiency of mechanical-to-electrical power transduction. This paper explores the use of parametric resonance, which unlike the former, the resonant-induced amplitude growth, is not limited by linear damping and wherein can potentially offer higher and broader nonlinear peaks. A numerical model has been constructed to demonstrate the potential improvements over the convention. Despite the promising potential, a damping-dependent initiation threshold amplitude has to be attained prior to accessing this alternative resonant phenomenon. Design approaches have been explored to passively reduce this initiation threshold. Furthermore, three representative MEMS designs were fabricated with both 25 and 10 μm thick device silicon. The devices include electrostatic cantilever-based harvesters, with and without the additional design modification to overcome initiation threshold amplitude. The optimum performance was recorded for the 25 μm thick threshold-aided MEMS prototype with device volume ∼0.147 mm3. When driven at 4.2 ms -2, this prototype demonstrated a peak power output of 10.7 nW at the fundamental mode of resonance and 156 nW at the principal parametric resonance, as well as a 23-fold decrease in initiation threshold over the purely parametric prototype. An approximate doubling of the half-power bandwidth was also observed for the parametrically excited scenario. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the differentiation of Nostoc sphaeroides Kutzing to the hormogonia stage. Results showed that differentiation of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration. Following the testing of different sugars, the effects of different lights were examined. It was found that 5 10 μ mol.m(-2)&BULL; s(-1) photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80% differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in inducing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and energy budget were measured for three sizes(2.4, 11.1 and 22.5 g) of juvenile white sturgeon Acipenser transmontanus held at 18.5 degrees C and fed tubificid worms at different levels ranging from starvation to ad libitum. For each size-class, specific growth rate increased linearly with increasing ration, and conversion efficiency was highest at the maximum ration. Growth rate decreased with increasing fish size at the maximum ration, but increased with size al each restricted ration. Conversion efficiency increased with increasing ration for each size-class and was usually highest at the maximum ration. Faecal production accounted for 3.2-5.2% of food energy. The proportion of food energy lost in nitrogenous excretion decreased with increasing ration. With increases in ration, the allocation of metabolizable energy to metabolism decreased, while that to growth increased. Fish size had no significant effect on the allocation of metabolizable energy to metabolism or growth. Al the maximum ration, on average 64.9% of metabolizable energy was spent on metabolism, and 35.1% on growth. (C) 1996 The Fisheries Society of the British Isles