960 resultados para Endothelial disruptions
Resumo:
We recently reported that methionine-loaded human umbilical vein endothelial cells (HUVECs) exported homocysteine (Hcy) and were associated with hydroxyl radical generation and oxidation of lipids in LDL. Herein we have analysed the Hcy-induced posttranslational modifications (PTMs) of LDL protein. PTMs have been characterised using electrophoretic mobility shift, protein carbonyl ELISA, HPLC with electrochemical detection and Western blotting of 3-nitrotyrosine, and LDL uptake by scavenger receptors on monocyte/macrophages. We have also analysed PTMs in LDL isolated from rheumatoid (RA) and osteo-(OA) arthritis patients with cardiovascular disease (CVD). While reagent Hcy (<50 μM) promoted copper-catalysed LDL protein oxidation, Hcy released from methionine-loaded HUVECs promoted LDL protein nitration. In addition, LDL nitration was associated with enhanced monocyte/macrophage uptake when compared with LDL oxidation. LDL protein nitration and uptake by monocytes, but not carbonyl formation, was elevated in both RA and OA patients with CVD compared with disease-matched patients that had no evidence of CVD. Moreover, a direct correlation between plasma total Hcy (tHcy) and LDL uptake was observed. The present studies suggest that elevated plasma tHcy may promote LDL nitration and increased scavenger receptor uptake, providing a molecular mechanism that may contribute to the clinical link between CVD and elevated plasma tHcy. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Monocyte recruitment and retention in the vasculature is influenced by oxidative stress and is involved in cardiovascular disease (CVD). Individuals with low plasma ascorbate are at elevated risk of CVD. It is unknown whether vitamin C supplementation affects monocyte adhesion to endothelial cells (ECs) in healthy non-smokers. In a randomised double-blind crossover study the effect of vitamin C supplementation (six weeks, 250 mg/day) was determined in subjects with normal (HIC) and below average (LOC) plasma vitamin C concentration at baseline (mean = 67μM, n = 20, mean = 32μM, n = 20, respectively). LOC subjects showed 30% greater monocyte adhesion to ECs. This was significantly reduced by 37% (P < 0.02) following vitamin C supplementation to levels of HIC monocyte adhesion. No differences in plasma malondialdehyde concentrations were observed between groups or after supplementation. In conclusion, vitamin C supplementation normalises monocyte adhesion in subjects with low plasma vitamin C (LOC). This process may be related to a direct effect on monocytes, independent of lipid peroxidation. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.
Resumo:
Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.
Resumo:
C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. The effects of CRP on primary human monocyte adhesion molecule expression and interaction with the endothelium have not been studied. Herein, we describe an investigation into the phenotypic and functional consequences of CRP binding to peripheral blood monocytes ex vivo. Peripheral whole blood was collected from healthy, non-smoking males. Mononuclear cells (MNC) and monocytes were isolated by differential centrifugation using lymphoprep and Dynal negative isolation kit, respectively. Cells were exposed to CRP from 0 to 250 μg/ml for 0-60 min at 37°C and analysed for (a) CD11b, PECAM-1 (CD31) and CD32 expression by flow cytometry and (b) adhesion to LPS (1 μg/ml; 0-24 h) treated human umbilical vein endothelial cells (HUVEC). CD14+ monocyte expression of CD11b increased significantly up to twofold when exposed to CRP, compared to controls. There was no significant difference in CD32 expression, whereas CD31 expression decreased after exposure to CRP. CRP treatment of monocytes inhibited their adhesion to early LPS-activated HUVEC (0-5 h). However, the adhesion of CRP-treated monocytes to HUVEC was significantly greater to late activation antigens on HUVEC (24 h, LPS) compared to controls. We have shown that CRP can affect monocyte activation ex vivo and induce phenotypic changes that result in an altered recruitment to endothelial cells. This study provides the first evidence for a further role for C-reactive protein in both monocyte activation and adhesion, which may be of importance during an inflammatory event.