721 resultados para Elite Athletes
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
This study investigated the effects of alcohol ingestion on lower body strength and power, and physiological and cognitive recovery following competitive Rugby League matches. Nine male Rugby players participated in two matches, followed by one of two randomized interventions; a control or alcohol ingestion session. Four hours post-match, participants consumed either beverages containing a total of 1g of ethanol per kg bodyweight (vodka and orange juice; ALC) or a caloric and taste matched non-alcoholic beverage (orange juice; CONT). Pre, post, 2 h post and 16 h post match measures of countermovement jump (CMJ), maximal voluntary contraction(MVC), voluntary activation (VA), damage and stress markers of creatine kinase (CK), C-reactive protein (CRP), cortisol, and testosterone analysed from venous blood collection, and cognitive function (modified Stroop test) were determined. Alcohol resulted in large effects for decreased CMJ height(-2.35 ± 8.14 and -10.53 ± 8.36 % decrement for CONT and ALC respectively; P=0.15, d=1.40), without changes in MVC (P=0.52, d=0.70) or VA (P=0.15, d=0.69). Furthermore, alcohol resulted in a significant slowing of total time in a cognitive test (P=0.04, d=1.59), whilst exhibiting large effects for detriments in congruent reaction time (P=0.19, d=1.73). Despite large effects for increased cortisol following alcohol ingestion during recovery (P=0.28, d=1.44), post-match alcohol consumption did not unduly affect testosterone (P-0.96, d=0.10), CK (P=0.66, d=0.70) or CRP(P=0.75, d=0.60). It appears alcohol consumption during the evening following competitive rugby matches may have some detrimental effects on peak power and cognitive recovery the morning following a Rugby League match. Accordingly, practitioners should be aware of the potential associated detrimental effects of alcohol consumption on recovery and provide alcohol awareness to athletes at post-match functions.
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.
Resumo:
This study examined relationships between competitive trait anxiety and coping strategies among ballet dancers. Participants were 104 classical dancers (81 females and 23 males) ranging in age from 15 to 35 years (mean 19.4 years; SD 3.8 years) from three professional ballet companies, two private dance schools, and two university dance courses in Australia. Participants completed the Modified COPE scale and the Sport Anxiety Scale. Trait anxiety scores, in particular for somatic anxiety and worry, were significant predictors of 7 of the 12 coping strategies (wishful thinking, r2 = 42.3%; selfblame, r2 = 35.7%; suppression of competing activities, r2 = 27.1%; venting of emotions, r2 = 23.2%; denial, r2 = 17.7%; effort, r2 = 16.6%; active coping, r2 = 14.3%). Approximately 96% of dancers could be classified correctly as high or low trait-anxious from their reported coping style. No significant effects of gender or status (professional versus students) were found. Findings showed that high trait-anxious athletes tend to use more maladaptive, emotion-focused coping strategies compared with low trait-anxious athletes; a tendency that has been proposed to lead to negative performance effects. Dancers who are by nature anxious about performance may need special attention to help them to learn to cope with performance-related stress. Med Probl Perform Art 18:59–64, 2003.
Resumo:
Bovine colostrum has been shown to influence the cytokine production of bovine leukocytes. However, it remains unknown whether processed bovine colostrum, a supplement popular among athletes to enhance immune function, is able to modulate cytokine secretion of human lymphocytes and monocytes. The aim of this investigation was to determine the influence of a commercially available bovine colostrum protein concentrate (CPC) to stimulate cytokine production by human peripheral blood mononuclear cells (PBMCs). Blood was sampled from four healthy male endurance athletes who had abstained from exercise for 48 h. PBMCs were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5, and 5% with and without lipopolysaccharide (LPS) (3 microg/mL) and phytohemagglutinin (PHA) (2.5 microg/mL). Cell supernatants were collected at 6 and 24 h of culture for the determination of tumor necrosis factor (TNF), interferon (IFN)-gamma, interleukin (IL)-10, IL-6, IL-4, and IL-2 concentrations. Bovine CPC significantly stimulated the release of IFN-gamma, IL-10, and IL-2 (p < 0.03). The addition of LPS to PBMCs cocultured with bovine CPC significantly stimulated the release of IL-2 and inhibited the early release of TNF, IL-6, and IL-4 (p < 0.02). Phytohemagglutinin stimulation in combination with bovine CPC significantly increased the secretion of IL-10 and IL-2 at 6 h of culture and inhibited IFN-gamma and TNF (p < 0.05). This data show that a commercial bovine CPC is able to modulate in vitro cytokine production of human PBMCs. Alterations in cytokine secretion may be a potential mechanism for reported benefits associated with supplementation.
Resumo:
Video-based training combined with flotation tank recovery may provide an additional stimulus for improving shooting in basketball. A pre-post controlled trial was conducted to assess the effectiveness of a 3 wk intervention combining video-based training and flotation tank recovery on three-point shooting performance in elite female basketball players. Players were assigned to an experimental (n=10) and control group (n=9). A 3 wk intervention consisted of 2 x 30 min float sessions a week which included 10 min of video-based training footage, followed by a 3 wk retention phase. A total of 100 three-point shots were taken from 5 designated positions on the court at each week to assess three-point shooting performance. There was no clear difference in the mean change in the number of successful three-point shots between the groups (-3%; ±18%, mean; ±90% confidence limits). Video-based training combined with flotation recovery had little effect on three-point shooting performance.
Resumo:
The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points(<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.
Resumo:
It is hypothesized that increased plasma or serum concentrations of extracellular heat shock proteins (eHSP) serve as a danger signal to the innate immune system. Cellular binding of eHSP leads to activation of NK cells and monocytes, as measured by their increased cytokine production, mitotic division and killing capacity. We examined whether eHSP binds to NK lymphocytes in vivo in athletes performing endurance exercise in the heat. Eighteen trained male runners ran at 70% VO2max at 35 degrees C and 40% relative humidity. Venous blood collected before, after and 1.5 h after exercise was analysed for leukocyte distribution, phenotype and eHSP70. NK cell-enriched samples were examined for co-localization of CD94 and eHSP70 expression. Plasma eHSP-70 concentration was measured by ELISA. Subjects ran for approximately 50 min, which elicited a reversible leukocytosis. NK cell count increased 83% (p < 0.01) immediately after exercise, then decreased to 66% of the resting level 1.5 h after exercise (p < 0.05). Plasma eHSP concentration increased 167% after exercise and remained elevated (by up to 71%) 1.5 h after exercise (p < 0.01). eHSP was expressed on both NK cells and monocytes at all times; the count of NK cells positive for eHSP doubled from 0.04 +/- 0.02 10(9)/L (mean +/- SD) to 0.08 +/- 0.06 10(9)/L after exercise. In summary, exercise in the heat increased free plasma eHSP concentration, and the eHSP co-localized with CD94 on NK cells. These data confirm the link between exercise and activation of the innate immune system.
Resumo:
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT1 and VT2), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (VO2peak = 64.5 +/- 5.2 ml[middle dot]kg-1[middle dot]min-1) performed (a) a progressive cycle test to measure VO2peak, peak power output (PPO), VT1, and VT2; (b) a time to exhaustion test (Tmax) at their VO2peak power output (Pmax); and (c) a 40-km time-trial (TT40). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 3 60% Tmax at Pmax, 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% Tmax at Pmax, recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT40 performance, VO2peak, VT1,VT2, and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT40 performance were modestly related to the changes in VO2peak, VT1, VT2, and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT40 performance were related to significant increases in VO2peak, VT1,VT2, and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.
Resumo:
Changes in plasma zinc concentration and markers of immune function were examined in a group of 10 male runners (n = 10) following a moderate increase in training over four weeks. Seven sedentary males acted as controls. Fasting blood samples were taken at rest, before (T0) and after (T4) four weeks of increased (+ 16 %) training and after two weeks of reduced (-31 %) training (T6). Blood was analysed for plasma zinc concentration, differential leucocyte counts, lymphocyte subpopulations and lymphocyte proliferation using incorporation of 3H-thymidine. The runners increased their training volume by 16 % over the four weeks. When compared with the nonathletes, the runners had lower concentrations of plasma zinc (p = 0.012), CD3 + (p = 0.042) and CD19 + lymphocytes (p = 0.010) over the four weeks. Lymphocyte proliferation in response to Concanavalin A stimulation was greater in the runners (p = 0.0090). Plasma zinc concentration and immune markers remained constant during the study. Plasma zinc concentration correlated with total leucocyte counts in the athletes at T6 (r = -0.72, p < 0.05) and with Pokeweed mitogen stimulation in the nonathletes at T6 (r = -0.92, p < 0.05). Therefore, athletes are unlikely to benefit from zinc supplementation during periods of moderately increased training volume.
Resumo:
Ascorbic acid or vitamin C is involved in a number of biochemical pathways that are important to exercise metabolism and the health of exercising individuals. This review reports the results of studies investigating the requirement for vitamin C with exercise on the basis of dietary vitamin C intakes, the response to supplementation and alterations in plasma, serum, and leukocyte ascorbic acid concentration following both acute exercise and regular training. The possible physiological significance of changes in ascorbic acid with exercise is also addressed. Exercise generally causes a transient increase in circulating ascorbic acid in the hours following exercise, but a decline below pre-exercise levels occurs in the days after prolonged exercise. These changes could be associated with increased exercise-induced oxidative stress. On the basis of alterations in the concentration of ascorbic acid within the blood, it remains unclear if regular exercise increases the metabolism of vitamin C. However, the similar dietary intakes and responses to supplementation between athletes and nonathletes suggest that regular exercise does not increase the requirement for vitamin C in athletes. Two novel hypotheses are put forward to explain recent findings of attenuated levels of cortisol postexercise following supplementation with high doses of vitamin C.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
PURPOSE: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. METHODS: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; VO(2peak) = 64.5 +/- 5.2 mL x kg(-1) min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption (VO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T(max)) at their VO(2peak) power output (P(max)), as well as 3) a 40-km time-trial (TT(40)). Subjects were matched and assigned to one of four training groups (G(2), N = 8, 8 x 60% T(max) at P(max), 1:2 work:recovery ratio; G(2), N = 9, 8 x 60% T(max) at P(max), recovery at 65% HR(max); G(3), N = 10, 12 x 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1), G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. RESULTS: All HIT groups improved TT(40) performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to +1.1%; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their VO(2peak) significantly more than G(CON) (+1.0%; P < 0.05). CONCLUSION: The present study has shown that when HIT incorporates P(max) as the interval intensity and 60% of T(max) as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
Exposure to cold air, whole body cryotherapy (WBC), is a novel treatment employed by athletes. In WBC individuals dressed in minimal clothing are exposed to a temperature below -100°C for 2-4 min. The use of WBC has been advocated as a treatment for various knee injuries. PURPOSE: To compare the effects of two modalities of cryotherapy, -110°C WBC and 8°C cold water immersion (CWI) on knee skin temperature (Tsk). METHODS: With ethical approval and written informed consent 10 healthy active male participants (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat (measured by DXA), 7.6 ± 2.0 mm patellar skin fold; mean±SD) were exposed to 4 min of CWI and WBC. The treatment order was randomised in a controlled crossover design, with a minimum of 7 days between treatments. During WBC participants stood in a chamber (-60±3°C) for 20 s before entering the main chamber (-110°C±3°C) where they remained for 3 min and 40 s. For CWI participants were seated in a tank filled with cold water (8±0.3°C) and immersed to the level of the sternum for 4 min. Right knee Tsk was assessed via non-contact, infrared thermal imaging. A quadrilateral region of interest was created using inert markers placed 5 cm above and below the most superior and inferior aspect of the patella. Tsk within this quadrilateral was recorded pre, immediately post and every 10 min thereafter for 60 min. Tsk changes were examined using a two-way (treatment x time) repeated measures analyses of variance. In addition, a paired sample t-test was used to compare baseline Tsk before both treatments. RESULTS: Knee Tsk was similar before treatment (WBC: 29.9±0.7°C, CWI: 29.6±0.9°C, p>0.05). There was a significant main effect for treatment (p<0.05) and time (p<0.001). Compared to baseline, Tsk was significantly reduced (p<0.05) immediately post and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Knee Tsk was lower (p<0.05) immediately after WBC (19.0±0.9°C) compared to CWI (20.5±0.6°C). However, from 10 to 60 min post, knee Tsk was lower (p<0.05) following the CWI treatment. CONCLUSION: WBC elicited a greater decrease in knee Tsk compared to CWI immediately after treatment. However, both modalities display different recovery patterns and Tsk after CWI was significantly lower than WBC at 10, 20, 30, 40, 50 and 60 min after treatment.
Resumo:
Context: The Ober and Thomas tests are subjective and involve a "negative" or "positive" assessment, making them difficult to apply within the paradigm of evidence-based medicine. No authors have combined the subjective clinical assessment with an objective measurement for these special tests. Objective: To compare the subjective assessment of iliotibial band and iliopsoas flexibility with the objective measurement of a digital inclinometer, to establish normative values, and to provide an evidence-based critical criterion for determining tissue tightness. Design: Cross-sectional study. Setting: Clinical research laboratory. Patients or Other Participants: Three hundred recreational athletes (125 men, 175 women; 250 in injured group, 50 in control group). Main Outcome Measure(s): Iliotibial band and iliopsoas muscle flexibility were determined subjectively using the modified Ober and Thomas tests, respectively. Using a digital inclinometer, we objectively measured limb position. lnterrater reliability for the subjective assessment was compared between 2 clinicians for a random sample of 100 injured participants, who were classified subjectively as either negative or positive for iliotibial band and iliopsoas tightness. Percentage of agreement indicated interrater reliability for the subjective assessment. Results: For iliotibial band flexibility, the average inclinometer angle was -24.59 degrees +/- 7.27 degrees. A total of 432 limbs were subjectively assessed as negative (-27.13 degrees +/- 5.53 degrees) and 168 as positive (-16.29 degrees +/- 6.87 degrees). For iliopsoas flexibility, the average inclinometer angle was -10.60 degrees +/- 9.61 degrees. A total of 392 limbs were subjectively assessed as negative (-15.51 degrees +/- 5.82 degrees) and 208 as positive (0.34 degrees +/- 7.00 degrees). The critical criteria for iliotibial band and iliopsoas flexibility were determined to be -23.16 degrees and -9.69 degrees, respectively. Between-clinicians agreement was very good, ranging from 95.0% to 97.6% for the Thomas and Ober tests, respectively. Conclusions: Subjective assessments and instrumented measurements were combined to establish normative values and critical criterions for tissue flexibility for the modified Ober and Thomas tests.