943 resultados para Electron Transfer Reactions of Sulphanes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. RESULTS: Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependent manner. More than 90% of transduced cells were small and medium sized neurons (< 700 microm 2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (approximately 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell types. CONCLUSION: We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterisation of nanoparticles (NP) based on size distribution, surface area, reactivity, and aggregation status of nanoparticles (NP) are of prime importance because they are usually closely related to toxicity. To date, most of the toxicity studies are quite time and money consuming. In the present study we report the oxidative properties of a panel of various NP (four Carbonaceous, nine Metal oxides, and one Metal as showed in Table 1) assessed with an acellular reactivity test measuring dithiothreitol (DTT) consumption (Sauvain et al. 2008). Such a test allows determining the ability of NP to catalyse the transfer of electrons from DTT to oxygen. DTT is used as a reductant species. NP were diluted and sonicated in Tween 80® to a final concentration of 50 g/mL. Printex 90 was diluted 5 times before doing the DTT assay because of its expected higher activity. Suspensions were characterised for NP size distribution by Nanoparticle Tracking Analysis (Nanosight©). Fresh solutions were incubated with DTT (100 μM). Aliquots were taken every 5 min and the remaining DTT was determined by reacting it with DTNB. The reaction rate was determined for NP suspensions and blank in parallel. The mean Brownian size distribution of NP agglomerates in suspension is presented in Table 1. D values correspond to 10th, and 50th percentiles of the particle diameters. All the NP agglomerated in Tween 80 with a D50 size corresponding to at least twice their primary size, except for Al2O3 (300 nm). The DTT test showed Printex 90 sample to be the most reactive one, followed by Diesel EPA and Nanotubes. Most of the metallic NP was nonresponding toward this test, except for NiO and Ag which reacted positively and ZnO which presented the most negative reactivity (see Figure 1). This last observation suggests that electron transfer between DTT and oxygen is hindered in presence of ZnO compared with the blank. Such "stabilization" could be attributable to ZnO dissolution and complexation between Zn2+ ions and DTT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fourth instar larva of Lutzomyia (Lutzomyia) longipalpis (Phlebotomidae: Phlebotominae) was studied by scanning electron microscope. Based on three-dimensional observations, the fine structure and setal position (using of setal numeration) of the larva are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript reports the study of the carbon-halide bond cleavage in 4-nitrobenzyl halides, taking special attention to the iodide and fluoride derivatives. The electrochemical reduction mechanism has been disclosed for both compounds by terms of cyclic voltammetry and controlled potential electrolysis. In the case of 4-nitrobenzyl iodide, a first one electron irreversible wave leads to the corresponding 4-nitrobenzyl radical and iodide. However, in the case of 4-nitrobenzyl fluoride, a first one-electron reversible wave appears at –1.02 vs. SCE followed by one electron irreversible wave. In this second electron transfer process, the cleavage of the C-F bond is taking place, so the bond cleavage reaction occurs at the dianion level. To disclose and understand the electrochemical reduction mechanisms that allows to obtain important thermodynamic and kinetic data that would help in the understanding of C-X bond cleavage. This type of bond dissociation reactions are involved in the metabolism pathways of the human body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adoptive transfer therapy of in vitro-expanded tumor-specific cytolytic T lymphocytes (CTLs) can mediate objective cancer regression in patients. Yet, technical limitations hamper precise monitoring of posttherapy T cell responses. Here we show in a mouse model that fused single photon emission computed tomography and x-ray computed tomography allows quantitative whole-body imaging of (111)In-oxine-labeled CTLs at tumor sites. Assessment of CTL localization is rapid, noninvasive, three-dimensional, and can be repeated for longitudinal analyses. We compared the effects of lymphodepletion before adoptive transfer on CTL recruitment and report that combined treatment increased intratumoral delivery of CTLs and improved antitumor efficacy. Because (111)In-oxine is a Food and Drug Administration-approved clinical agent, and human SPECT-CT systems are available, this approach should be clinically translatable, insofar as it may assess the efficacy of immunization procedures in individual patients and lead to development of more effective therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asbestos is an industrial term to describe some fibrous silicate minerals, which belong to the amphiboles or serpentines group. Six minerals are defined as asbestos including: chrysotile (white asbestos), amosite (grunerite, brown asbestos), crocidolite (riebeckite, blue asbestos), anthophyllite, tremolite and actonolite, but only in their fibrous form. In 1973, the IARC (International Agency for Research on Cancer) classified the asbestos minerals as carcinogenic substances (IARC,1973). The Swiss threshold limit (VME) is 0.01 fibre/ml (SUVA, 2007). Asbestos in Switzerland has been prohibited since 1990, but this doesn't mean we are over asbestos. Up to 20'000 tonnes/year of asbestos was imported between the end of WWII and 1990. Today, all this asbestos is still present in buildings renovated or built during that period of time. During restorations, asbestos fibres can be emitted into the air. The quantification of the emission has to be evaluated accurately. To define the exact risk on workers or on the population is quite hard, as many factors must be considered. The methods to detect asbestos in the air or in materials are still being discussed today. Even though the EPA 600 method (EPA, 1993) has proved itself for the analysis of bulk materials, the method for air analysis is more problematic. In Switzerland, the recommended method is VDI 3492 using a scanning electron microscopy (SEM), but we have encountered many identifications problems with this method. For instance, overloaded filters or long-term exposed filters cannot be analysed. This is why the Institute for Work and Health (IST) has adapted the ISO10312 method: ambient air - determination of asbestos fibres - direct-transfer transmission electron microscopy (TEM) method (ISO, 1995). Quality controls have already be done at a French institute (INRS), which validate our practical experiences. The direct-transfer from MEC's filters on TEM's supports (grids) is a delicate part of the preparation for analysis and requires a lot of trials in the laboratory. IST managed to do proper grid preparations after about two years of development. In addition to the preparation of samples, the micro-analysis (EDX), the micro-diffraction and the morphologic analysis (figure 1.a-c) are also to be mastered. Theses are the three elements, which prove the different features of asbestos identification. The SEM isn't able to associate those three analyses. The TEM is also able to make the difference between artificial and natural fibres that have very similar chemical compositions as well as differentiate types of asbestos. Finally the experiments concluded by IST show that TEM is the best method to quantify and identify asbestos in the air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrative and conjugative elements (ICEs) are particularly interesting model systems for horizontal gene transfer, because they normally reside in an integrated state in the host chromosome but can excise and self-transfer under particular conditions, typically requiring exquisite regulatory cascades. Despite important advances in our understanding of the transfer mechanisms of a number of ICE, many essential details are lacking. Recently we reported that ICEclc, a 103 kb ICE of Pseudomonas knackmussii B13, has two active origins of transfer (oriTs), which is very much unlike conjugative plasmids that usually employ a single oriT. We discuss here how this dual oriT system could function and how it actually could have presented an evolutionary advantage for ICEclc distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometry (MS) is currently the most sensitive and selective analytical technique for routine peptide and protein structure analysis. Top-down proteomics is based on tandem mass spectrometry (MS/ MS) of intact proteins, where multiply charged precursor ions are fragmented in the gas phase, typically by electron transfer or electron capture dissociation, to yield sequence-specific fragment ions. This approach is primarily used for the study of protein isoforms, including localization of post-translational modifications and identification of splice variants. Bottom-up proteomics is utilized for routine high-throughput protein identification and quantitation from complex biological samples. The proteins are first enzymatically digested into small (usually less than ca. 3 kDa) peptides, these are identified by MS or MS/MS, usually employing collisional activation techniques. To overcome the limitations of these approaches while combining their benefits, middle-down proteomics has recently emerged. Here, the proteins are digested into long (3-15 kDa) peptides via restricted proteolysis followed by the MS/MS analysis of the obtained digest. With advancements of high-resolution MS and allied techniques, routine implementation of the middle-down approach has been made possible. Herein, we present the liquid chromatography (LC)-MS/MS-based experimental design of our middle-down proteomic workflow coupled with post-LC supercharging.