967 resultados para Electroencephalogram (EEG)
Resumo:
The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.
Resumo:
In clinical practice, a classification of seizures based on clinical signs and symptoms leads to an improved understanding of epilepsy-related issues and therefore strongly contributes to a better patient care. The inverse problem involves inferring the anatomical brain localization of a seizure from the scalp surface EEG, a concept we apply here to correlate seizure origin with seizure semiology. The spheres of sensorium, motor features, consciousness changes and autonomic alterations during ictal and postictal manifestations are reviewed, including several subdivisions used to better categorize particular features. Particular attention is given to behavioral features, as well as to features occurring in idiopathic generalized epileptic syndromes and psychogenic nonepileptic spells.
Resumo:
Introduction: Clinical examination and electroencephalography study (EEG) have been recommended to predict functional recovery in comatose survivors of cardiac arrest (CA), however their prognostic value in patients treated with induced hypothermia (IH) has not been evaluated. Hypothesis: We aimed to validate the prognostic ability of clinical examination and EEG in predicting outcome of patients with coma after CA treated with IH and sought to derive a score with high predictive value for poor functional outcome in this setting. Methods: We prospectively studied 100 consecutive comatose survivors of CA treated with IH. Repeated neurological examination and EEG were performed early after passive rewarming and off sedation. Mortality was assessed at hospital discharge, and functional outcome at 3 to 6 months with Cerebral Performance Categories (CPC), and was dichotomized as good (CPC 1-2) vs. poor (CPC 3-5). Independent predictors of outcome were identified by multivariable logistic regression and used to assess the prognostic value of a Reproducible Electro-clinical Prognosticators of Outcome Score (REPOS). Results: Patients (20/100) with good outcome had all a reactive EEG background. Incomplete recovery of brainstem reflexes, myoclonus, time to return of spontaneous circulation (ROSC) > 25 min, and unreactive EEG background were all independent predictors of death and severe disability, and were added to construct the REPOS. Using a cut-off of 0 or 1 variables for good vs. 2 to 4 for poor outcome, the REPOS had a positive predictive value of 1.00 (95% CI: 0.92-1.00), a negative predictive value of 0.43 (95% CI: 0.29-0.58) and an accuracy of 0.81 for poor functional recovery at 3 to 6 months. Conclusions: In comatose survivors of CA treated with IH, a prognostic score, including clinical and EEG examination, was highly predictive of death and poor functional outcome at 3 to 6 months. Lack of EEG background reactivity strongly predicted poor neurological recovery after CA. Our findings show that clinical and electrophysiological studies are effective in predicting long-term outcome of comatose survivors after CA and IH, and suggest that EEG improves early prognostic assessment in the setting of therapeutic cooling.
Resumo:
Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112ms) and on a separate period at ~270ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.
Resumo:
The mammalian brain oscillates through three distinct global activity states: wakefulness, non-rapid eye movement (NREM) sleep and REM sleep. The regulation and function of these 'vigilance' or 'behavioural' states can be investigated over a broad range of temporal and spatial scales and at different levels of functional organization, i.e. from gene expression to memory, in single neurons, cortical columns or the whole brain and organism. We summarize some basic questions that have arisen from recent approaches in the quest for the functions of sleep. Whereas traditionally sleep was viewed to be regulated through top-down control mechanisms, recent approaches have emphasized that sleep is emerging locally and regulated in a use-dependent (homeostatic) manner. Traditional markers of sleep homeostasis, such as the electroencephalogram slow-wave activity, have been linked to changes in connectivity and plasticity in local neuronal networks. Thus waking experience-induced local network changes may be sensed by the sleep homeostatic process and used to mediate sleep-dependent events, benefiting network stabilization and memory consolidation. Although many questions remain unanswered, the available data suggest that sleep function will best be understood by an analysis which integrates sleep's many functional levels with its local homeostatic regulation.
Resumo:
The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions.
Resumo:
Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.
Resumo:
Rationale: Clinical and electrophysiological prognostic markers of brain anoxia have been mostly evaluated in comatose survivors of out hospital cardiac arrest (OHCA) after standard resuscitation, but their predictive value in patients treated with mild induced hypothermia (IH) is unknown. The objective of this study was to identify a predictive score of independent clinical and electrophysiological variables in comatose OHCA survivors treated with IH, aiming at a maximal positive predictive value (PPV) and a high negative predictive value (NPV) for mortality. Methods: We prospectively studied consecutive adult comatose OHCA survivors from April 2006 to May 2009, treated with mild IH to 33-34_C for 24h at the intensive care unit of the Lausanne University Hospital, Switzerland. IH was applied using an external cooling method. As soon as subjects passively rewarmed (body temperature >35_C) they underwent EEG and SSEP recordings (off sedation), and were examined by experienced neurologists at least twice. Patients with status epilepticus were treated with AED for at least 24h. A multivariable logistic regression was performed to identify independent predictors of mortality at hospital discharge. These were used to formulate a predictive score. Results: 100 patients were studied; 61 died. Age, gender and OHCA etiology (cardiac vs. non-cardiac) did not differ among survivors and nonsurvivors. Cardiac arrest type (non-ventricular fibrillation vs. ventricular fibrillation), time to return of spontaneous circulation (ROSC) >25min, failure to recover all brainstem reflexes, extensor or no motor response to pain, myoclonus, presence of epileptiform discharges on EEG, EEG background unreactive to pain, and bilaterally absent N20 on SSEP, were all significantly associated with mortality. Absent N20 was the only variable showing no false positive results. Multivariable logistic regression identified four independent predictors (Table). These were used to construct the score, and its predictive values were calculated after a cut-off of 0-1 vs. 2-4 predictors. We found a PPV of 1.00 (95% CI: 0.93-1.00), a NPV of 0.81 (95% CI: 0.67-0.91) and an accuracy of 0.93 for mortality. Among 9 patients who were predicted to survive by the score but eventually died, only 1 had absent N20. Conclusions: Pending validation in a larger cohort, this simple score represents a promising tool to identify patients who will survive, and most subjects who will not, after OHCA and IH. Furthermore, while SSEP are 100% predictive of poor outcome but not available in most hospitals, this study identifies EEG background reactivity as an important predictor after OHCA. The score appears robust even without SSEP, suggesting that SSEP and other investigations (e.g., mismatch negativity, serum NSE) might be principally needed to enhance prognostication in the small subgroup of patients failing to improve despite a favorable score.
Resumo:
Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.
Resumo:
ABSTRACT : Genetic approach in the sleep field is at the beginning of its wide expansion. Transitions between sleep and wakefulness, and the maintenance of these states are driven by complex neurobiologic mechanisms with reciprocal interactions. Impairment in both transitions and maintenance of behavioral states leads to debilitating conditions. The major symptom being excessive daytime sleepiness, characterizing most sleep disorders but also a wide variety of psychiatric and neurologic disorders, as well as the elderly. Until now, most wake-promoting drugs available directly (e.g., amphetamines and possibly modafinil) or indirectly (e.g., caffeine) provokes dopamine release which is believed to influence the abuse potential of these drugs. The effects of genetic components were assessed here, on drug-induced wakefulness and age-related sleep changes in three inbred mouse strains [AKR/J, C57BL/6J, DBA/2J] that differ in their major sleep phenotypes. Three wake-promoting drugs were used; d-amphetamine, a classical stimulant, modafinil, the most widely-prescribed stimulant, and YKP-10A, a novel wake-promoting agent with antidepressant proprieties. Electrical activity (Electroencephalogram) and gene expression of the brain were assessed and indicate a highly genotype-dependant response to wake promotion and subsequent recovery sleep. Aging effects on sleep-wake regulation were also strongly influenced by genetic determinants. By assessing the age-dependant effects at several time points (from 3 months to 2 years old mice), we found a strong genetic effect on vigilance states. These studies demonstrate a critical role for genetic factors neglected till now in the fields of pharmacology and aging effects on vigilance states.
Resumo:
The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.
Resumo:
Complex auditory hallucinations are often characterized by hearing voices and are then called auditory verbal hallucinations (AVHs). While AVHs have been extensively investigated in psychiatric patients suffering from schizophrenia, reports from neurological patients are rare and, in most cases, incomplete. Here, we characterize AVHs in 9 patients suffering from pharmacoresistant epilepsy by analyzing the phenomenology of AVHs and patients' neuropsychological and lesion profiles. From a cohort of 352 consecutively examined patients with epilepsy, 9 patients suffering AVHs were identified and studied by means of a semistructured interview, neuropsychological tests, and multimodal imaging, relying on a combination of functional and structural neuroimaging data and surface and intracranial EEG. We found that AVHs in patients with epilepsy were associated with prevalent language deficits and damage to posterior language areas and basal language areas in the left temporal cortex. Auditory verbal hallucinations, most of the times, consisted in hearing a single voice of the same gender and language as the patient and had specific spatial features, being, most of the times, perceived in the external space, contralateral to the lesion. We argue that the consistent location of AVHs in the contralesional external space, the prominence of associated language deficits, and the prevalence of lesions to the posterior temporal language areas characterize AVHs of neurological origin, distinguishing them from those of psychiatric origin.
Resumo:
Postoperative care of major neurosurgical procedures is aimed at the prevention, detection and treatment of secondary brain injury. This consists of a series of pathological events (i.e. brain edema and intracranial hypertension, cerebral hypoxia/ischemia, brain energy dysfunction, non-convulsive seizures) that occur early after the initial insult and surgical intervention and may add further burden to primary brain injury and thus impact functional recovery. Management of secondary brain injury requires specialized neuroscience intensive care units (ICU) and continuous advanced monitoring of brain physiology. Monitoring of intracranial pressure (ICP) is a mainstay of care and is recommended by international guidelines. However, ICP monitoring alone may be insufficient to detect all episodes of secondary brain insults. Additional invasive (i.e. brain tissue PO2, cerebral microdialysis, regional cerebral blood flow) and non-invasive (i.e. transcranial doppler, near-infrared spectroscopy, EEG) brain monitoring devices might complement ICP monitoring and help clinicians to target therapeutic interventions (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Several independent studies demonstrate such multimodal approach may optimize patient care after major neurosurgical procedures. The aim of this review is to evaluate some of the available monitoring systems and summarize recent important data showing the clinical utility of multimodal neuromonitoring for the management of main acute neurosurgical conditions, including traumatic brain injury, subarachnoid hemorrhage and stroke.
Resumo:
Coma after cardiac arrest (CA) is an important cause of admission to the ICU. Prognosis of post-CA coma has significantly improved over the past decade, particularly because of aggressive postresuscitation care and the use of therapeutic targeted temperature management (TTM). TTM and sedatives used to maintain controlled cooling might delay neurologic reflexes and reduce the accuracy of clinical examination. In the early ICU phase, patients' good recovery may often be indistinguishable (based on neurologic examination alone) from patients who eventually will have a poor prognosis. Prognostication of post-CA coma, therefore, has evolved toward a multimodal approach that combines neurologic examination with EEG and evoked potentials. Blood biomarkers (eg, neuron-specific enolase [NSE] and soluble 100-β protein) are useful complements for coma prognostication; however, results vary among commercial laboratory assays, and applying one single cutoff level (eg, > 33 μg/L for NSE) for poor prognostication is not recommended. Neuroimaging, mainly diffusion MRI, is emerging as a promising tool for prognostication, but its precise role needs further study before it can be widely used. This multimodal approach might reduce false-positive rates of poor prognosis, thereby providing optimal prognostication of comatose CA survivors. The aim of this review is to summarize studies and the principal tools presently available for outcome prediction and to describe a practical approach to the multimodal prognostication of coma after CA, with a particular focus on neuromonitoring tools. We also propose an algorithm for the optimal use of such multimodal tools during the early ICU phase of post-CA coma.
Resumo:
This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.