985 resultados para Elastic materials
Resumo:
A set of finite elements (FEs) is formulated to analyze wave propagation through inhomogeneous material when subjected to mechanical, thermal loading or piezo-electric actuation. Elastic, thermal and electrical properties of the materials axe allowed to vary in length and thickness direction. The elements can act both as sensors and actuators. These elements are used to model wave propagation in functionally graded materials (FGM) and the effect of inhomogeneity in the wave is demonstrated. Further, a surface acoustic wave (SAW) device is modeled and wave propagation due to piezo-electric actuation from interdigital transducers (IDTs) is studied.
Resumo:
Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.
Resumo:
The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Resistance temperature detectors (RTDs) are being widely used to detect low temperature, while thermocouples (TCs) are being used to detect high temperature. The materials suitable for RTDs are platinum, germanium, carbon, carbon-glass, cernox, etc. Here, we have reported the possible application of another form of carbon i.e. carbon nanotubes in low temperature thermometry. It has been shown the resistance R and the sensitivity of carbon nanotube bundles can be tuned and made suitable for ultralow temperature detection. We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K to felicitate the possible application of bundles in low temperature RTDs. ©2008 American Institute of Physics
Resumo:
Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.
Resumo:
This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.
Resumo:
At the present time, materials with dimensions in the range of microns to nanometers have become the prime objects of vigorous research activities of all over the world. The possibility of artificially creating novel materials with exotic and tailor made properties that are essential for future development in the frontier areas of electronics, photonics, spintronics etc has generated much interest in the study of these mesoscopic and nanoscopic materials. These materials also have the potential for wide ranging economically viable technological, industrial, engineering and bio-medical applications. They may consist of metals , alloys , ceramics, polymers, composites and biological materials; which are usually assembled at the atomic / molecular level to achieve new properties. Understanding the underlying science and characterization of these new materials with a view of harnessing their exotic properties is the prime focus of the researchers. These Proceedings address these issues relating to mesoscopic, nanoscopic and macroscopic materials.