981 resultados para Earth materials
Resumo:
At the present time, materials with dimensions in the range of microns to nanometers have become the prime objects of vigorous research activities of all over the world. The possibility of artificially creating novel materials with exotic and tailor made properties that are essential for future development in the frontier areas of electronics, photonics, spintronics etc has generated much interest in the study of these mesoscopic and nanoscopic materials. These materials also have the potential for wide ranging economically viable technological, industrial, engineering and bio-medical applications. They may consist of metals , alloys , ceramics, polymers, composites and biological materials; which are usually assembled at the atomic / molecular level to achieve new properties. Understanding the underlying science and characterization of these new materials with a view of harnessing their exotic properties is the prime focus of the researchers. These Proceedings address these issues relating to mesoscopic, nanoscopic and macroscopic materials.
Resumo:
In the present investigation, basic studies were conducted using Inclined pin-on-plate sliding Tester to understand the role of surface texture of hard material against soft materials during sliding. Soft materials such as Al-Mg alloy, pure Al and pure Mg were used as pins and 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in tests. It was observed that the transfer layer formation and the coefficient of friction which has two components, namely adhesion and plowing component, are controlled by the surface texture of harder material. For the case of Al-Mg alloy, stick-slip phenomenon was absent under both dry and lubricated conditions. However, for the case of Al, it was observed only under lubricated conditions while for the case of Mg, it was observed under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The plowing component of friction was highest for the surface that promotes plane strain conditions near the surface and was lowest for the surface that promotes plane stress conditions near the surface.
Resumo:
In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.
Resumo:
A comparative study of strain response and mechanical properties of rammed earth prisms, has been made using Fiber Bragg Grating (FBG) sensors (optical) and clip-on extensometer (electro-mechanical). The aim of this study is to address the merits and demerits of traditional extensometer vis-à-vis FBG sensor; a uni-axial compression test has been performed on a rammed earth prism to validate its structural properties from the stress - strain curves obtained by two different methods of measurement. An array of FBG sensors on a single fiber with varying Bragg wavelengths (..B), has been used to spatially resolve the strains along the height of the specimen. It is interesting to note from the obtained stress-strain curves that the initial tangent modulus obtained using the FBG sensor is lower compared to that obtained using clip-on extensometer. The results also indicate that the strains measured by both FBG and extensometer sensor follow the same trend and both the sensors register the maximum strain value at the same time.
Resumo:
he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.
Resumo:
The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.