973 resultados para ENVIRONMENTAL EFFECTS
Resumo:
The Cerrado is the second largest Brazilian biome and contains the headwaters of three major hydrological basins in Brazil. In spite of the biological and ecological relevance of this biome, there is little information about how land use changes affect the chemistry of low-order streams in the Cerrado. To evaluate these effects streams that drain areas under natural, rural, and urban land cover were sampled near Brasilia, Brazil. Water samples were collected between September 2004 and December 2006. Chemical concentrations generally followed the pattern of Urban > Rural > Natural. Median conductivity of stream water of 21.6 (interquartile: 22.7) mu S/cm in urban streams was three and five-fold greater relative to rural and natural areas, respectively. In the wet season, despite of increasing discharge, concentration of many solutes were higher, particularly in rural and natural streams. Streams also presented higher total dissolved N (TDN) loads from natural to rural and urban although DIN:DON ratios did not differ significantly. In natural and urban streams TDN was 80 and 77% dissolved organic N, respectively. These results indicate that alterations in land cover from natural to rural and urban are changing stream water chemistry in the Cerrado with increasing solute concentrations, in addition to increased TDN output in areas under urban cover, with potential effects on ecosystem function.
Resumo:
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The influence of different densities of the algae Pseudokirchneriella subcapitata on the chronic toxicity of cadmium to Ceriodaphnia dubia was investigated. The importance of algal cells as a source of metal to zooplankton was studied by exposing P. subcapitata cells to free cadmium ions and supplying the algae as food to C. dubia. The results of a bifactorial analysis (metal versus food levels) showed that metal toxicity to zooplankton was dependent on food level. Significant toxic effects on the fecundity and survival of C. dubia were observed at low metal concentrations with high algal density. Algae contaminated with Cd2+ were less toxic to cladoceran than was the Cd2+ in solution. Green algae retained cadmium and released low metal concentration in the test medium. We concluded that algal cells are an important route of exposure to metal and a factor that has an appreciable influence on the expression of metal toxicity to daphnids. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This experiment examined the effects of the discharge of water treatment plant (WTP) sludge into the following three types of wastewater treatment systems: a pilot-scale upflow anaerobic sludge blanket (UASB) reactor, a pilot-scale activated sludge system, and a full-scale activated sludge sequencing batch reactor (SBR). The UASB reactor received 50 mg of suspended solids ( SS) of WTP sludge per liter of wastewater in the first phase, and, in the second phase, it received 75 mg SS/L. The pilot-scale activated sludge system received 25 and 50 mg SS/L in the first and second phases, respectively. The full-scale WWTP ( SBR) received approximately 74 mg SS/L. The results of the experiments showed that, despite some negative effects on nitrification, there were positive effects on phosphorus removal, and, furthermore, there was the addition of solids in all systems. Water Environ. Res., 82, 392 ( 2010).
Resumo:
Capybaras were monitored weekly from 1998 to 2006 by counting individuals in three anthropogenic environments (mixed agricultural fields, forest and open areas) of southeastern Brazil in order to examine the possible influence of environmental variables (temperature, humidity, wind speed, precipitation and global radiation) on the detectability of this species. There was consistent seasonality in the number of capybaras in the study area, with a specific seasonal pattern in each area. Log-linear models were fitted to the sample counts of adult capybaras separately for each sampled area, with an allowance for monthly effects, time trends and the effects of environmental variables. Log-linear models containing effects for the months of the year and a quartic time trend were highly significant. The effects of environmental variables on sample counts were different in each type of environment. As environmental variables affect capybara detectability, they should be considered in future species survey/monitoring programs.
Resumo:
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.
Resumo:
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the vector of the bacteria that causes citrus greening and is considered one of the world`s most important citrus diseases. We examined how host, geographic region, and gender affect the thermal requirements of D. citri. The insects were reared in climatic chambers at constant temperatures of 18, 20, 22, 25, 28, 30, and 32 1 degrees C, 70 +/- 10% RH, and a 14 h photophase. Host plants for D. citri included orange (Citrus sinensis [Rutaceae]) varieties Pera and Natal, the rootstock, Rungpur lime (C. limonia [Rutaceae]) and the natural host, Orange jessamine (Murraya paniculata [Rutaceae]). To study the influence of geographic origin on thermal requirements, we studied D. citri populations from Piracicaba, SP (warmer region) and Itapetininga, SP (cooler region). The duration and survival of the development stages and the duration of the total development (egg-adult) did not differ significantly on the different hosts, but it did vary with temperature. Nymphs of D. citri created on the different hosts have the same thermal requirements. The thermal requirements for this species collected from the two climate regions were identical; males and females also had the same thermal requirements.
Resumo:
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.
Resumo:
Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.
Resumo:
This study evaluated the influence of gastrointestinal environmental factors (pH, digestive enzymes, food components, medicaments) on the survival of Lactobacillus casei Shirota and Lactobacillus casei LC01, using a semi-dynamic in vitro model that simulates the transit of microorganisms through the human GIT. The strains were first exposed to different simulated gastric juices for different periods of time (0, 30, 60 and 120 min), and then to simulated intestinal fluids for zero, 120, 180 and 240 min, in a step-wise format. The number of viable cells was determined after each step. The influence of food residues (skim milk) in the fluids and resistance to medicaments commonly used for varied therapeutic purposes (analgesics, antiarrhythmics, antibiotics, antihistaminics, proton pump inhibitors, etc.) were also evaluated. Results indicated that survival of both cultures was pH and time dependent, and digestive enzymes had little influence. Milk components presented a protective effect, and medicaments, especially anti-inflammatory drugs, influenced markedly the viability of the probiotic cultures, indicating that the beneficial effects of the two probiotic cultures to health are dependent of environmental factors encountered in the human gastrointestinal tract.
Resumo:
We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5 mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pretreated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Some studies have recently suggested that mercury (Hg)-exposed populations face increased risks of cardiovascular diseases, and experimental data indicate that such risks might be due to reductions in nitric oxide bioavailability. However, no previous study has examined whether Hg exposure affects plasma nitrite concentrations in humans as an indication of nitric oxide production. Here, we investigated whether there is an association between circulating nitrite and Hg concentrations in whole blood, plasma and hair from an exposed methylmercury (MeHg) population. Hair and blood samples were collected from 238 persons exposed to MeHg from fish consumption. Hg concentrations in plasma (PHg), whole blood (BHg) and hair Hg (HHg) were determined by inductively coupled plasma-mass spectrometry. Mean BHg content was 49.8 +/- 35.2 mu g/l, mean PHg was 7.8 +/- 6.9 mu g/l and HHg 14.6 +/- 10.6 mu g/g. Mean plasma nitrite concentration was 253.2 +/- 105.5 nM. No association was found between plasma nitrite concentration and BHg or HHg concentrations in a univariate model. However, multiple regression models adjusted for gender, age and fish consumption showed a significant association between plasma nitrite and plasma Hg concentration (beta = -0.1, p < 0.001). Our findings constitute preliminary clinical evidence that exposure to MeHg may cause inhibitory effects on the production of endothelial nitric oxide.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Iron deficiency is a common nutritional disorder, affecting about 30% of the world population. Deficits in iron functional compartments have suppressive effects on the immune system. Environmental problems, age, and other nutrient deficiencies are some of the situations which make human studies difficult and warrant the use of animal models. This study aimed to investigate alterations in the immune system by inducing iron deficiency and promoting recuperation in a mouse model. Hemoglobin concentration, hematocrit, liver iron store, and flow cytometry analyses of cell-surface transferrin receptor (CD71) on peripheral blood and spleen CD4+ and CD8+ T lymphocyte were performed in the control (C) and the iron-deficient (ID) groups of animals at the beginning and end of the experiment. Hematological indices of C and ID mice were not different but the iron stores of ID mice were significantly reduced. Although T cell subsets were not altered, the percentage of T cells expressing CD71 was significantly increased by ID. The results suggest that iron deficiency induced by our experimental model would mimic the early events in the onset of anemia, where thymus atrophy is not enough to influence subset composition of T cells, which can still respond to iron deficiency by upregulating the expression of transferrin receptor.