918 resultados para EEG SIGNALS
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.
Resumo:
This thesis presents a possible method to calculate sea level variation using geodetic-quality Global Navigate Satellite System (GNSS) receivers. Three antennas are used: two small antennas and a choke ring one, analyzing only Global Positioning System signals. The main goal of the thesis is to test a modified configuration for antenna set up. In particular, measurements obtained tilting one antenna to face the horizon are compared to measurements obtained from antennas looking upward. The location of the experiment is a coastal environment nearby the Onsala Space Observatory in Sweden. Sea level variations are obtained using periodogram analysis of the SNR signal and compared to synthetic gauge generated from two independent tide gauges. The choke ring antenna provides poor result, with an RMS around 6 cm and a correlation coefficients of 0.89. The smaller antennas provide correlation coefficients around 0.93. The antenna pointing upward present an RMS of 4.3 cm and the one pointing the horizon an RMS of 6.7 cm. Notable variation in the statistical parameters is found when modifying the length of the interval analyzed. In particular, doubts are risen on the reliability of certain scattered data. No relation is found between the accuracy of the method and weather conditions. Possible methods to enhance the available data are investigated, and correlation coefficient above 0.97 can be obtained with small antennas when sacrificing data points. Hence, the results provide evidence of the suitability of SNR signal analysis for sea level variation in coastal environment even in the case of adverse weather conditions. In particular, tilted configurations provides comparable result with upward looking geodetic antennas. A SNR signal simulator is also tested to investigate its performance and usability. Various configuration are analyzed in combination with the periodogram procedure used to calculate the height of reflectors. Consistency between the data calculated and those received is found, and the overall accuracy of the height calculation program is found to be around 5 mm for input height below 5 m. The procedure is thus found to be suitable to analyze the data provided by the GNSS antennas at Onsala.
Resumo:
Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research application which guarantees a specific biochemical and metabolic characterization of tissues by the detection and quantification of key metabolites for diagnosis and disease staging. The "Associazione Italiana di Fisica Medica (AIFM)" has promoted the activity of the "Interconfronto di spettroscopia in RM" working group. The purpose of the study is to compare and analyze results obtained by perfoming MRS on scanners of different manufacturing in order to compile a robust protocol for spectroscopic examinations in clinical routines. This thesis takes part into this project by using the GE Signa HDxt 1.5 T at the Pavillion no. 11 of the S.Orsola-Malpighi hospital in Bologna. The spectral analyses have been performed with the jMRUI package, which includes a wide range of preprocessing and quantification algorithms for signal analysis in the time domain. After the quality assurance on the scanner with standard and innovative methods, both spectra with and without suppression of the water peak have been acquired on the GE test phantom. The comparison of the ratios of the metabolite amplitudes over Creatine computed by the workstation software, which works on the frequencies, and jMRUI shows good agreement, suggesting that quantifications in both domains may lead to consistent results. The characterization of an in-house phantom provided by the working group has achieved its goal of assessing the solution content and the metabolite concentrations with good accuracy. The goodness of the experimental procedure and data analysis has been demonstrated by the correct estimation of the T2 of water, the observed biexponential relaxation curve of Creatine and the correct TE value at which the modulation by J coupling causes the Lactate doublet to be inverted in the spectrum. The work of this thesis has demonstrated that it is possible to perform measurements and establish protocols for data analysis, based on the physical principles of NMR, which are able to provide robust values for the spectral parameters of clinical use.
Resumo:
L’obiettivo della mia tesi è quello di presentare e confrontare due tipologie di tecniche di indagine cerebrale, l’EEG (Elettroencefalogramma) e la fMRI (Risonanza Magnetica funzionale), evidenziandone i vantaggi e gli svantaggi, e le loro applicazioni in campo medico. Successivamente è presentato lo sviluppo di un modello sperimentale volto allo studio del fenomeno della sinestesia, a partire da dati estratti mediante le tecniche precedenti.
Resumo:
Nel presente lavoro di tesi è stato sviluppato e testato un sistema BCI EEG-based che sfrutta la modulazione dei ritmi sensorimotori tramite immaginazione motoria della mano destra e della mano sinistra. Per migliorare la separabilità dei due stati mentali, in questo lavoro di tesi si è sfruttato l'algoritmo CSP (Common Spatial Pattern), in combinazione ad un classificatore lineare SVM. I due stati mentali richiesti sono stati impiegati per controllare il movimento (rotazione) di un modello di arto superiore a 1 grado di libertà, simulato sullo schermo. Il cuore del lavoro di tesi è consistito nello sviluppo del software del sistema BCI (basato su piattaforma LabVIEW 2011), descritto nella tesi. L'intero sistema è stato poi anche testato su 4 soggetti, per 6 sessioni di addestramento.
Resumo:
I neuroni in alcune regioni del nostro cervello mostrano una risposta a stimoli multisensoriali (ad es. audio-visivi) temporalmente e spazialmente coincidenti maggiore della risposta agli stessi stimoli presi singolarmente (integrazione multisensoriale). Questa abilità può essere sfruttata per compensare deficit unisensoriali, attraverso training multisensoriali che promuovano il rafforzamento sinaptico all’interno di circuiti comprendenti le regioni multisensoriali stimolate. Obiettivo della presente tesi è stato quello di studiare quali strutture e circuiti possono essere stimolate e rinforzate da un training multisensoriale audio-visivo. A tale scopo, sono stati analizzati segnali elettroencefalografici (EEG) registrati durante due diversi task di discriminazione visiva (discriminazione della direzione di movimento e discriminazione di orientazione di una griglia) eseguiti prima e dopo un training audio-visivo con stimoli temporalmente e spazialmente coincidenti, per i soggetti sperimentali, o spazialmente disparati, per i soggetti di controllo. Dai segnali EEG di ogni soggetto è stato ricavato il potenziale evento correlato (ERP) sullo scalpo, di cui si è analizzata la componente N100 (picco in 140÷180 ms post stimolo) verificandone variazioni pre/post training mediante test statistici. Inoltre, è stata ricostruita l’attivazione delle sorgenti corticali in 6239 voxel (suddivisi tra le 84 ROI coincidenti con le Aree di Brodmann) con l’ausilio del software sLORETA. Differenti attivazioni delle ROI pre/post training in 140÷180 ms sono state evidenziate mediante test statistici. I risultati suggeriscono che il training multisensoriale abbia rinforzato i collegamenti sinaptici tra il Collicolo Superiore e il Lobulo Parietale Inferiore (nell’area Area di Brodmann 7), una regione con funzioni visuo-motorie e di attenzione spaziale.
Resumo:
Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individual's EEG alpha frequency (IAF) is a putative marker of the subject's state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.
Resumo:
In multivariate time series analysis, the equal-time cross-correlation is a classic and computationally efficient measure for quantifying linear interrelations between data channels. When the cross-correlation coefficient is estimated using a finite amount of data points, its non-random part may be strongly contaminated by a sizable random contribution, such that no reliable conclusion can be drawn about genuine mutual interdependencies. The random correlations are determined by the signals' frequency content and the amount of data points used. Here, we introduce adjusted correlation matrices that can be employed to disentangle random from non-random contributions to each matrix element independently of the signal frequencies. Extending our previous work these matrices allow analyzing spatial patterns of genuine cross-correlation in multivariate data regardless of confounding influences. The performance is illustrated by example of model systems with known interdependence patterns. Finally, we apply the methods to electroencephalographic (EEG) data with epileptic seizure activity.
Resumo:
To investigate whether there are any objective EEG characteristics that change significantly between specific time periods during maintenance of wakefulness test (MWT) and whether such changes are associated with the ability to appropriately communicate sleepiness.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.
Resumo:
Abnormal perceptions and cognitions in schizophrenia might be related to abnormal resting states of the brain. Previous research found that a specific class (class D) of sub-second electroencephalography (EEG) microstates was shortened in schizophrenia. This shortening correlated with positive symptoms. We questioned if this reflected positive psychotic traits or present psychopathology.