952 resultados para ECTOPLACENTAL CONE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray mammography has been the gold standard for breast imaging for decades, despite the significant limitations posed by the two dimensional (2D) image acquisitions. Difficulty in diagnosing lesions close to the chest wall and axilla, high amount of structural overlap and patient discomfort due to compression are only some of these limitations. To overcome these drawbacks, three dimensional (3D) breast imaging modalities have been developed including dual modality single photon emission computed tomography (SPECT) and computed tomography (CT) systems. This thesis focuses on the development and integration of the next generation of such a device for dedicated breast imaging. The goals of this dissertation work are to: [1] understand and characterize any effects of fully 3-D trajectories on reconstructed image scatter correction, absorbed dose and Hounsifeld Unit accuracy, and [2] design, develop and implement the fully flexible, third generation hybrid SPECT-CT system capable of traversing complex 3D orbits about a pendant breast volume, without interference from the other. Such a system would overcome artifacts resulting from incompletely sampled divergent cone beam imaging schemes and allow imaging closer to the chest wall, which other systems currently under research and development elsewhere cannot achieve.

The dependence of x-ray scatter radiation on object shape, size, material composition and the CT acquisition trajectory, was investigated with a well-established beam stop array (BSA) scatter correction method. While the 2D scatter to primary ratio (SPR) was the main metric used to characterize total system scatter, a new metric called ‘normalized scatter contribution’ was developed to compare the results of scatter correction on 3D reconstructed volumes. Scatter estimation studies were undertaken with a sinusoidal saddle (±15° polar tilt) orbit and a traditional circular (AZOR) orbit. Clinical studies to acquire data for scatter correction were used to evaluate the 2D SPR on a small set of patients scanned with the AZOR orbit. Clinical SPR results showed clear dependence of scatter on breast composition and glandular tissue distribution, otherwise consistent with the overall phantom-based size and density measurements. Additionally, SPR dependence was also observed on the acquisition trajectory where 2D scatter increased with an increase in the polar tilt angle of the system.

The dose delivered by any imaging system is of primary importance from the patient’s point of view, and therefore trajectory related differences in the dose distribution in a target volume were evaluated. Monte Carlo simulations as well as physical measurements using radiochromic film were undertaken using saddle and AZOR orbits. Results illustrated that both orbits deliver comparable dose to the target volume, and only slightly differ in distribution within the volume. Simulations and measurements showed similar results, and all measured dose values were within the standard screening mammography-specific, 6 mGy dose limit, which is used as a benchmark for dose comparisons.

Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is very important, especially when using non-traditional trajectories. Uniform phantoms filled with various uniform density fluids were used to investigate differences in HU accuracy between saddle and AZOR orbits. Results illustrate the considerably better performance of the saddle orbit, especially close to the chest and nipple region of what would clinically be a pedant breast volume. The AZOR orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values in reconstructed volumes.

Finally, the third generation, fully-suspended SPECT-CT system was designed in and developed in our lab. A novel mechanical method using a linear motor was developed for tilting the CT system. A new x-ray source and a custom made 40 x 30 cm2 detector were integrated on to this system. The SPECT system was nested, in the center of the gantry, orthogonal to the CT source-detector pair. The SPECT system tilts on a goniometer, and the newly developed CT tilting mechanism allows ±15° maximum polar tilting of the CT system. The entire gantry is mounted on a rotation stage, allowing complex arbitrary trajectories for each system, without interference from the other, while having a common field of view. This hybrid system shows potential to be used clinically as a diagnostic tool for dedicated breast imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Office-based percutaneous revision of a testicular prosthesis has never been reported. A patient received a testicular prosthesis but was dissatisfied with the firmness of the implant. In an office setting, the prosthesis was inflated with additional fluid via a percutaneous approach. Evaluated outcomes included patient satisfaction, prosthesis size, recovery time, and cost savings. The patient was satisfied, with no infection, leak, or complication after more than 1 year of follow-up, at significantly less cost than revision surgery. Percutaneous adjustment of testicular prosthesis fill-volume can be safe, inexpensive, and result in good patient satisfaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tomography problem is investigated when the available projections are restricted to a limited angular domain. It is shown that a previous algorithm proposed for extrapolating the data to the missing cone in Fourier space is unstable in the presence of noise because of the ill-posedness of the problem. A regularized algorithm is proposed, which converges to stable solutions. The efficiency of both algorithms is tested by means of numerical simulations. © 1983 Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed Lagrangian-Eulerian model of a Water Curtain barrier is presented. The heat, mass and momentum processes are modelled in a Lagrangian framework for the dispersed phase and in an Eulerian framework for the carrier phase. The derivation of the coupling source terms is illustrated with reference to a given carrier phase cell. The turbulent character of the flow is treated with a single equation model, modified to directly account for the influence of the particles on the flow. The model is implemented in the form of a 2 D incompressible Navier Stokes solver, coupled to an adaptive Rung Kutta method for the Lagrangian sub-system. Simulations of a free standing full cone water spray show satisfactory agreement with experiment. Predictions of a Water Curtain barrier impacted by a cold gas cloud point to markedly different flow fields for the upward and downward configurations, which could influence the effectiveness of chemical absorption in the liquid phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina. METHODS: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm. RESULTS: Raman spectra of each of the photoreceptor inner and outer segments (PIS, POS) and of the outer nuclear layer (ONL) of the retina acquired at 785 nm were dominated by vibrational features characteristic of proteins and lipids. There was a clear difference between the inner and outer domains in the spectroscopic regions, amide I and III, known to be sensitive to protein conformation. The spectra recorded with 633 nm excitation mirrored those observed at 785 nm excitation for the amide I region, but with an additional pattern of bands in the spectra of the PIS region, attributed to cytochrome c. The same features were even more enhanced in spectra recorded with 514 nm excitation. A significant nucleotide contribution was observed in the spectra recorded for the ONL at all three excitation wavelengths. A Raman map was constructed of the major spectral components found in the retinal outer segments, as predicted by principal component analysis of the data acquired using 633 nm excitation. Comparison of the Raman map with its histological counterpart revealed a strong correlation between the two images. CONCLUSIONS: It has been demonstrated that Raman spectroscopy offers a unique insight into the biochemical composition of the light-sensing cells of the retina following the application of standard histological protocols. The present study points to the considerable promise of Raman microscopy as a component-specific probe of retinal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) is generally designed with a relatively higher content of finer, which includes cement, and dosage of superplasticizer than the conventional concrete. The design of the current SCC leads to high compressive strength, which is already used in special applications, where the high cost of materials can be tolerated. Using SCC, which eliminates the need for vibration, leads to increased speed of casting and thus reduces labour requirement, energy consumption, construction time, and cost of equipment. In order to obtain and gain maximum benefit from SCC it has to be used for wider applications. The cost of materials will be decreased by reducing the cement content and using a minimum amount of admixtures. This paper reviews statistical models obtained from a factorial design which was carried out to determine the influence of four key parameters on filling ability, passing ability, segregation and compressive strength. These parameters are important for the successful development of medium strength self-compacting concrete (MS-SCC). The parameters considered in the study were the contents of cement and pulverised fuel ash (PFA), water-to-powder ratio (W/P), and dosage of superplasticizer (SP). The responses of the derived statistical models are slump flow, fluidity loss, rheological parameters, Orimet time, V-funnel time, L-box, JRing combined to Orimet, JRing combined to cone, fresh segregation, and compressive strength at 7, 28 and 90 days. The models are valid for mixes made with 0.38 to 0.72 W/P ratio, 60 to 216 kg/m3 of cement content, 183 to 317 kg/m3 of PFA and 0 to 1% of SP, by mass of powder. The utility of such models to optimize concrete mixes to achieve good balance between filling ability, passing ability, segregation, compressive strength, and cost is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mix parameters on slump flow, loss of fluidity, flow resistance, segregation, JRing combined to Orimet, and compressive strength at 7 and 28 days. Cost analysis is carried out to show trade-offs between cost of materials and specified consistency levels and compressive strength at 7 and 28 days that can be used to identify economic mixes. The paper establishes the usefulness of the mathematical models as a tool to facilitate the test protocol required to optimise medium strength SCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss collaborative learning strategies based on the use of digital stories in corporate training and lifelong learning. The text starts with a concise review on theoretical and technical foundations about the use of digital technologies in collaborative strategies in lifelong learning. We will also discuss if the corporate training may be improved by the use of individual audio-visual experience in learning process. Careful planning, scripting and production of audio-visual digital stories can help in the construction of collaborative learning spaces in which adults are in the context of vocational training throughout life. Our analysis concludes emphasizing on the need to experience the routing performance of digital stories in the context of corporate training, following the reference levels mentioned here, so we can have in a future more theoretical and empirical elements for the validation and conceptualization in the use of digital stories in the context of corporate training. Ultimately we believe that lifelong learning can be improved with the use of strategies that promote the production of personal audio-visual for those involved in teaching and learning process in organizational context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the parameters of cement grout affecting rheological behaviour and compressive strength are investigated. Factorial experimental design was adopted in this investigation to assess the combined effects of the following factors on fluidity, rheological properties, induced bleeding and compressive strength: water/binder ratio (W/B), dosage of superplasticiser (SP), dosage of viscosity agent (VA), and proportion of limestone powder as replacement of cement (LSP). Mini-slump test, Marsh cone, Lombardi plate cohesion meter, induced bleeding test, coaxial rotating cylinder viscometer were used to evaluate the rheology of the cement grout and the compressive strengths at 7 and 28 days were measured. A two-level fractional factorial statistical model was used to model the influence of key parameters on properties affecting the fluidity, the rheology and compressive strength. The models are valid for mixes with 0.35-0.42 W/B, 0.3-1.2% SP, 0.02-0.7% VA (percentage of binder) and 12-45% LSP as replacement of cement. The influences of W/B, SP, VA and LSP were characterised and analysed using polynomial regression which can identify the primary factors and their interactions on the measured properties. Mathematical polynomials were developed for mini-slump, plate cohesion meter, inducing bleeding, yield value, plastic viscosity and compressive strength as function of W/B, SP, VA and proportion of LSP. The statistical approach used highlighted the limestone powder effect and the dosage of SP and VA on the various rheological characteristics of cement grout

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first evidence of x-ray harmonic radiation extending to 3.3 A, 3.8 keV (order n > 3200) from petawatt class laser-solid interactions is presented, exhibiting relativistic limit efficiency scaling (eta similar to n(-2.5)-n(-3)) at multi-keV energies. This scaling holds up to a maximum order, n(RO)similar to 8(1/2)gamma(3), where gamma is the relativistic Lorentz factor, above which the first evidence of an intensity dependent efficiency rollover is observed. The coherent nature of the generated harmonics is demonstrated by the highly directional beamed emission, which for photon energy h nu > 1 keV is found to be into a cone angle similar to 4 degrees, significantly less than that of the incident laser cone (20 degrees).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phalloidin-fluorescein isothiocyanate staining of filamentous actin was used to identify muscle systems within the cercariae of Schistosoma mansoni. Examination of labeled cercariae by confocal scanning laser microscopy revealed distinct organizational levels of myofiber arrangements within the body wall, anterior cone, acetabulum, and esophagus. The body wall throughout showed a typical latticelike arrangement of outer circular and inner longitudinal myofibers, with an additional innermost layer of diagonal fibers in the anterior portion of the body. Circular and longitudinal fibers were also evident in the anterior organ and esophagus and. to some extent, the ventral acetabulum. Most striking was the striation of the cercarial tail musculature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m3 , dosage of PFA ranging from 29 to 261 kg/m3 , and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing need to identify the effect of mix composition on the rheological properties of composite cement pastes using simple tests to determine the fluidity, the cohesion and other mechanical properties of grouting applications such as compressive strength. This paper reviews statistical models developed using a fractional factorial design which was carried out to model the influence of key parameters on properties affecting the performance of composite cement paste. Such responses of fluidity included mini-slump, flow time using Marsh cone and cohesion measured by Lombardi plate meter and unit weight, and compressive strength at 3 d, 7 d and 28 d. The models are valid for mixes with 0.35 to 0.42 water-to-binder ratio (W/B), 10% to 40% of pulverised fuel ash (PFA) as replacement of cement by mass, 0.02 to 0.06% of viscosity enhancer admixture (VEA), by mass of binder, and 0.3 to 1.2% of superplasticizer (SP), by mass of binder. The derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of composite cement paste are presented. Such parameters can be useful to reduce the test protocol needed for proportioning of composite cement paste. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods which are highlighted. The multi parametric optimization is used in order to establish isoresponses for a desirability function of cement composite paste. Results indicate that the replacement of cement by PFA is compromising the early compressive strength and up 26%, the desirability function decreased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications such as soil, rock and oil-well grouting all require enormous amounts of cement and are good examples of areas where a high volume of fly ash could partially replace cement to produce low-cost, environmentally safe and durable concrete. There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater grouts such as washout resistance and compressive strength. This paper presents statistical models developed using a fractorial design which was carried out to model the influence of key parameters on properties affecting the performance of underwater grout. Such responses of fluidity included mini-slump and flow time measured by Marsh cone, washout resistance, unit weight and compressive strength. The models are valid for mixes with 0.40 to 0.60 water-to-cementitious materials ratio, 0.02 to 0.08% of anti-washout admixture, by mass of binder, and 0.6 to 1.8% of superplasticizer, by mass of cementitious materials. The grout was made with 50% of pulverized-fuel ash replacement, by mass ofcementitious materials. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper highlighted the influence of W/CM and dosage of antiwashout admixture and superplasticizer on fluidity, washout resistance and compressive strength and attempted also to demonstrate the usefulness of the models to improve understanding of trade-offs between parameters.