999 resultados para Drug Urges
Resumo:
The properties of hydrogels, in particular their high biocompatibility and water sorption uptake, make hydrogels very attractive in drug delivery and biomedical devices. These favorable features of hydrogels are compromised by certain structural limitations such as those associated with their low mechanical strength in the swollen state. This review highlights the most important challenges that may seriously affect the practical implementation of hydrogels in clinical practice and the solutions that may be applied to overcome these limitations. © 2012 Future Science Ltd.
Resumo:
The two group practices based in a city health centre decided to prescribe non-steroidal anti-inflammatory drugs in generic form from an agreed date. The practices' computer was used to identify the number of repeat prescriptions being issued for this group of drugs and to monitor the effectiveness of the changeover. Although both practices showed a marked increase in the level of generic prescribing there was considerable interpractice variation. Generic prescribing for one practice increased from 4% to 64% and for the other from 1% to 38% of repeat prescriptions issued for non-steroidal anti-inflammatory drugs over the study period. The reasons for this variation, the advantages of computerized audit and the problems associated with this self-imposed audit are discussed.
Resumo:
92
Resumo:
S-56
Resumo:
120
Resumo:
Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram