971 resultados para Diurnal pattern of soil respiration
Resumo:
Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in September 2002. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in March and October 2004. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in April and September 2005. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2008. In October 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2007. In March and in October 2007 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).